homehome Home chatchat Notifications


Researchers sequence DNA of coral and their associated organisms

They may be small, but they're far from inconsequential.

Alexandru Micu
September 24, 2019 @ 7:32 pm

share Share

Research from The University of Queensland and James Cook University is looking into which genes allow corals to make friends with algae and bacteria.

Image via Pixabay.

Corals work together with microscopic organisms, establishing symbiotic relationships that benefit both parties. While we’ve been aware of this for some time now, we didn’t understand the biochemical mechanisms that underpin this collaborative predisposition. A new study is shedding light on the subject.

Coral secrets

“Symbiotic relationships are incredibly important for thriving corals,” says Dr. Steven Robbins, the paper’s lead author. “The most striking example of this is coral bleaching, where corals expel their algal symbiotic partners at higher-than-normal water temperatures.”

Corals partner up with algae and bacteria to make ends meet. The coral fishes raw material out of the water and provides housing, and, in return, the algae keeps everyone well fed and plump. Certain stressors, however — especially sustained, excessive heat — can cause a falling out between the two partners, i.e. bleaching. Judging by how well they work together, such a ‘breakup’ is undeniably bad for both, and we know for a fact that coral reefs suffer extensive damage as a result of bleaching episodes.

Dr. Robbins says that the findings further our understanding of these collaborations, and can aid in conserving or perhaps even healing the world’s coral reefs.

“As algae make up the bulk of the coral’s food through photosynthesis, the coral will die if temperatures don’t cool enough to allow symbiosis to re-establish,” he explains. “It’s possible that equally important interactions are happening between corals and their bacteria and single-cell microorganisms (archaea), but we just don’t know.”

The team worked with Porites lutea coral samples retrieved from a reef near Orpheus Island, north of Townsville, Australia. In the lab, they separated the coral itself from its algal symbiotes and associated microbes — then they did genetic sequencing for all the organisms.

After they had a complete picture of the genetic material involved, they used an algorithm to see which genes each actor in the collaboration could draw from.

“This allows us to answer questions like, ‘What nutrients does the coral need, but not make itself?’,” says Dr. Robbins.

Credit: University of Queensland
Associate Professor David Bourne from JCU and the Australian Institute of Marine Science said having high-quality genomes for a coral and its microbial partners was hugely important.

The study’s findings are important as it is the first overall look at the genetic material of corals, their associated organisms, and of the genes that keep them functioning. Associate Professor David Bourne from James Cook University and the Australian Institute of Marine Science calls the findings “truly ground-breaking”, as, in effect, they represent the “blueprint for coral and their symbiotic communities.”

The team hopes that their findings will be put to good use in safeguarding the world’s coral reefs. These beautiful communities have been created by corals over millions of years, but virtually all have experienced bleaching events in recent years as a consequence of man-made climate warming.

“Our coral reefs support incredible diversity and when we lose reefs, we lose far more than corals. There are many threats to coral, but climate change is the most existential [one] for our reefs,” Dr. Robbins said.

“In 2016 and 2017, nearly 50 percent of all corals on the Great Barrier Reef died, and we don’t see this trajectory reversing if carbon emissions remain at current levels.”

On the one hand, research such as this will enable us to better understand corals and to figure out ways of making them more resilient. On the other hand, however, we shouldn’t rest on our laurels. The most straightforward way to safeguard corals and all other life on Earth is to limit our environmental impact by slashing pollution, emissions, and habitat destruction — even kids know this.

The paper “A genomic view of the reef-building coral Porites lutea and its microbial symbionts” has been published in the journal Nature Microbiology.

share Share

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Evolution just keeps creating the same deep-ocean mutation

Creatures at the bottom of the ocean evolve the same mutation — and carry the scars of human pollution

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.