homehome Home chatchat Notifications


Chewing robot developed to test gum as a potential drug delivery system

That's a new one for robots.

Alexandru Micu
July 15, 2020 @ 8:05 pm

share Share

Researchers at the University of Bristol (UoB) have created a robot for a peculiar purpose: chewing gum.

Image via Pixabay.

Robots keep coming for our jobs. Today, they’ve taken one of the easier ones — gum chewer. However, rest assured, it’s all in the name of science.

The robot is dentated to become a new gold standard for the testing of drug release from chewing gum. It has built-in humanoid jaws which closely replicate our chewing motions, and releases artificial saliva to allow researchers to estimate the transfer of substances from the gum to a potential user.

I have a mouth and I must chew

“Bioengineering has been used to create an artificial oral environment that closely mimics that found in humans,” says Dr Kazem Alemzadeh, Senior Lecturer in the UoB Department of Mechanical Engineering, who led the study.

“Our research has shown the chewing robot gives pharmaceutical companies the opportunity to investigate medicated chewing gum, with reduced patient exposure and lower costs using this new method.”

Chewing gum is recognized as a possible drug delivery method, but there currently aren’t any reliable ways of testing how much of a particular compound they can release during use.

The team’s theoretical work showed that a robot could be useful for this role — so they set out to build it and test it out.

The team explains that the robot can “closely replicate” the human chewing process. Its jaws are fully enclosed, allowing for the amount of released xylitol (a type of sweetener common in gum) to be measured.

n) shows the final prototype, l) shows a digital model of the robot.
Image credits Kazem Alemzadeh et al., (2020), IEE Transactions on Biomedical Engineering.

In order to assess the robot, the team had human participants chew the gum and then measured the amount of xylitol it contained after different chewing times. The team also took saliva and artificial saliva samples after 5, 10, 15, and 20 minutes of continuous chewing. The robot’s gum was then tested similarly and compared to that of the human participants.

The release rates between these two chewed gums were pretty similar, the team found. The greatest release of xylitol occurred during the first five minutes. After 20 minutes of chewing, only a low level of this compound remained in the gum, regardless of how it was chewed.

All in all, this suggests that the robot is a reliable estimation tool for chewing gum. It uses the same motions and chewing patterns as humans, and its artificial saliva seems to interact with the gum in a very similar way. As such, it could serve as the cornerstone of medical chewing gum.

“The most convenient drug administration route to patients is through oral delivery methods,” says Nicola West, Professor in Restorative Dentistry in the Bristol Dental School and co-author of the study.

“This research, utilizing a novel humanoid artificial oral environment, has the potential to revolutionize investigation into oral drug release and delivery.”

The paper “Development of a Chewing Robot with Built-in Humanoid Jaws to Simulate Mastication to Quantify Robotic Agents Release from Chewing Gums Compared to Human Participants” has been published in the journal IEEE Transactions on Biomedical Engineering.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.