homehome Home chatchat Notifications


Promising Zn-Mn battery can store a lot of energy, far cheaper than Lithium-ion

Researchers from Pacific Northwest National Laboratory have found a way to reliably produce batteries that are very cheap, but can store a lot of energy.

Tibi Puiu
April 19, 2016 @ 4:17 pm

share Share

For decades, researchers have been toying around with zinc-manganese batteries in search of an alternative for the far more popular, yet very expensive lithium-ion variety. In theory, these are as inexpensive as the  lead-acid batteries that power your car, while at the same time carrying far more energy density. If these are so good, why haven’t you heard about them? Because they haven’t worked, becoming useless fast after only a hundred or so charge-discharge cycles. An innovative research suggests the failure is based on a wrong assumption that Zn-Mn batteries work like Li-ion. Once they understood how these batteries actually work, a team of scientists stored energy in a Zn-Mn battery for  5,000 cycles, while retaining 92 percent of its initial storage capacity.

Researchers from Pacific Northwest National Laboratory have found a way to reliably produce batteries that are very cheap, but can store a lot of energy. Credit: PNNL

Researchers from Pacific Northwest National Laboratory have found a way to reliably produce batteries that are very cheap, but can store a lot of energy. Credit: PNNL

A lithium-ion battery relies on a process called intercalation to charge and discharge, which involves lithium ion entering and exiting through micro-gaps in between the atoms that comprise the battery’s two electrodes. Researchers from the Department of Energy’s Pacific Northwest National Laboratory assumed this is how rechargeable zing-manganese oxide battery would work as well, with zinc ions moving in a similar fashion in and out of the electrodes.

Set out to investigate these fascinating batteries, NNL Laboratory Fellow Jun Liu and colleagues made  zinc-manganese batteries with a negative zinc electrode, a positive manganese dioxide electrode and a water-based electrolyte in between the two. Surprise, surprise. This battery failed quickly after a couple of cycles, just like others before it.

It finally hit the team what was wrong after they used sophisticated instruments like Transmission Electron Microscopy, Nuclear Magnetic Resonance and X-Ray Diffraction to examine the electrodes. Their analysis revealed that the  manganese oxide was reacting with protons from the water-based electrolyte, which created a new material, zinc hydroxyl sulfate. Of course, it now makes sense why these batteries failed so early — when one of your electrodes starts transforming into something else, this is bound to happen. It’s actually amazing no one figured this out earlier.

Liu and team countered the reaction by adding manganese ions to the electrolyte. When the new battery was tested it performed over 5,000 cycles while still retaining 92 percent of the initial energy density of 285 milliAmpere-hours per gram. That’s roughly three times less than a Li-ion battery can store, but this Zn-Mn battery should be far cheaper.

“This research shows equilibrium needs to be controlled during a chemical conversion reaction to improve zinc-manganese oxide battery performance,” Liu said. “As a result, zinc-manganese oxide batteries could be a more viable solution for large-scale energy storage than the lithium-ion and lead-acid batteries used to support the grid today.”

Researchers will continue to investigate the inner workings of the zing-manganese oxide battery and hopefully this study will inspire some businesses to produce a pilot batch. These sort of batteries might prove extremely useful in storing renewable energy. Solution’s like Tesla’s Powerwall look great, but we can imagine a similar product that’s incredibly cheap, albeit quite sizeable. I can envision micro-grid communities who would also benefit a lot. Hopefully, this research won’t be forgotten in the annals of science like other fundamental battery studies before it.

“This finding opens new opportunities for the development of low-cost, high-performance rechargeable aqueous batteries,” the researchers conclude in the study’s abstract. 

 

share Share

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.

A New Antibiotic Was Hiding in Backyard Dirt and It Might Save Millions

A new antibiotic works when others fail.

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

ChatGPT Seems To Be Shifting to the Right. What Does That Even Mean?

ChatGPT doesn't have any political agenda but some unknown factor is causing a subtle shift in its responses.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.