homehome Home chatchat Notifications


X-rays image atoms during chemical reactions for the first time

Since its advent some 100 years ago, crystallography has become one of the most important processes in chemical research and development. It involves bombarding a material with X-rays to produce a diffraction pattern as they reflect off the sample. The pattern can be used then to directly determine the atomic structure of the crystal. Using […]

Tibi Puiu
June 24, 2014 @ 6:30 am

share Share

Since its advent some 100 years ago, crystallography has become one of the most important processes in chemical research and development. It involves bombarding a material with X-rays to produce a diffraction pattern as they reflect off the sample. The pattern can be used then to directly determine the atomic structure of the crystal. Using this technique, the structure of DNA was first obserbed, along with that of diamond, table salt, penicillin, numerous proteins, and entire viruses.

Crystallography works for only still structures, yet if Makoto Fujita at the University of Tokyo is correct, then a refined process can be used to image atomic arrangements as chemical reactions happen in real time. This means nothing short of crystallography 2.0 – similar to the technological jump from still photography to motion picture video recording.

Fujita and colleagues studied how a catalyst – a molecule that accelerates a chemical reaction without actually reacting with the elements involved in it – called palladium worked its magic in a reaction where it accelerates the attachment of a bromine atom to a larger molecule. This reaction was carried out in a solution, however modern crystallography can not provide snapshots of atomic structures of molecules moving in a solution. The researchers thus had to employ a trick.

The X-ray snapshots in the figure show the atomic arrangement of the molecule being brominated before, during, and after the reaction. Photo: Fujita et al/JACS

The X-ray snapshots in the figure show the atomic arrangement of the molecule being brominated before, during, and after the reaction. Photo: Fujita et al/JACS

The scientists trapped the catalyst and reacting molecules in a cage, before taking X-ray snapshots during the reaction. This proved to be key for their experiments since it made the molecules still for enough time to allow X-ray imaging capture. This helped Fujita and colleagues better explain and determine how the palladium catalyst played its part in the said reaction. Most importantly, however, the experiment demonstrates a new way to use crystallography to image the structure of changing compounds.

Findings appeared in the Journal of American Chemical Society.

share Share

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.

This New Catalyst Can Produce Ammonia from Air and Water at Room Temperature

Forget giant factories! A new portable device could allow farmers to produce ammonia right in the field, reducing costs, and emissions.

Astronauts will be making sake on the ISS — and a cosmic bottle will cost $650,000

Astronauts aboard the ISS are brewing more than just discoveries — they’re testing how sake ferments in space.

GeoPicture of the week: Biggest crystals in the world

Known as Cueva de los Cristales (Cave of Crystals), this hidden chamber in Mexico holds some of the largest natural crystals ever discovered. The translucent pillars, some as long as telephone poles and as wide as tree trunks, make for an eerie underground landscape, seemingly crafted by giants. But there’s no magic involved, just some […]

Pee-back time: Anti-Pee Paint Splashes Back at Public Urination

When man piss in wind, wind piss back, a modern Confucius states. In this line, the city of Hamburg ingeniously sought to address its growing public urination problem in the city's busy party center by painting walls with hydrophobic paint. Next time an unsuspecting person wants to take a load off in Hamburg's St. Pauli neighborhood, he might be in for a surprise - it'll splash back at him.

The World’s Thinnest Pasta Is Here — But It’s Not for Eating

Nanopasta might not make it to your dinner plate, but its ultrathin structure could revolutionize wound care.

Mild Habaneros Are Here and They’re Packed With Flavor Without the Fire

Meet "Hotta Notta" and "Mild Things," the heat-free habaneros you've been seeking for decades.

Baseball's "rubbing mud" actually works — and science shows how

“It spreads like a skin cream and grips like sandpaper,” says

Could Spraying Diamonds into the Sky Be the Key to Cooling the Planet?

Nothing is more precious than our planet, and we must cool it fast. Scientists say this can be done by decorating the sky with diamonds.

Scientists create silk fiber that mimics Spider-Man’s web-slinging powers

This lab-made silk fiber can lift objects 80 times its weight.