homehome Home chatchat Notifications


Spiders weave graphene-infused silk: the strongest of both worlds

Graphene - the one atom thick sheet of carbon arranged in a hexagon lattice - is the strongest material known to man, and spider silk is one of the strongest found in nature, second only to limpet teeth. Heck, why not combine the two? Sounds silly, but it surprisingly worked when Nicola Pugno of the University of Trento, Italy sprayed spiders with both graphene particles and carbon nanotubes. The spiders weaved silk infused with the materials, and in some cases the silk was 3.5 times stronger than its natural counterpart. The resulting fiber is tougher than "synthetic polymeric high performance fibers (e.g. Kevlar49) and even the current toughest knotted fibers,” according to the paper published in Materials Science, which obviously entails a lot of real-life applications, industrial or otherwise.

Tibi Puiu
May 8, 2015 @ 10:05 am

share Share

Graphene – the one atom thick sheet of carbon arranged in a hexagon lattice – is the strongest material known to man, and spider silk is one of the strongest found in nature, second only to limpet teeth. Heck, why not combine the two? Sounds silly, but it surprisingly worked when Nicola Pugno of the University of Trento, Italy sprayed spiders with both graphene particles and carbon nanotubes. The spiders weaved silk infused with the materials, and in some cases the silk was 3.5 times stronger than its natural counterpart. The resulting fiber is tougher than “synthetic polymeric high performance fibers (e.g. Kevlar49) and even the current toughest knotted fibers,” according to the paper published in Materials Science, which obviously entails a lot of real-life applications, industrial or otherwise.

spider silk

Image: G News

Pugno and colleagues first collected some 15 Pholcidae spiders, which are fairly common in the Italian countryside and kept some of the woven fibers for reference. They then simply sprayed the spiders’ bodies with a solution containing a mixture of water and graphene particles 200 to 300 nanometres wide. Another group of spiders was sprayed with a solution that contained carbon nanotubes – carbon atoms linked in hexagonal shapes, with each carbon atom covalently bonded to three other carbon atoms. Although, like buckyballs, carbon nanotubes are strong, they are not brittle. They can be bent, and when released, they will spring back to their original shape.

Some of the resulting spider silk was flimsy and failed, but some spiders managed to weave a reinforced web that was incredibly strong. The researchers measured the properties of the silk by placing the fibers between two C-shaped holders, then again inside a special device that subjected the fibers to mechanical load.

“We measure a fracture strength up to 5.4 GPa, a Young’s modulus up to 47.8 GPa, and a toughness modulus up to 2.1 GPa,” the researchers explain. “This is the highest toughness modulus for a fibre,” they add.

On one occasion, the woven fiber was 3.5 times stronger than the strongest spire web measured in the world, spun by the giant riverine orb spider. It’s not clear though how the materials ended up in the web to reinforce it. Pugno and team believes the spiders soaked up the graphene and nanotubes and incorporated them into their silk when it was spun.

Spider silk is definitely something the industry is keeping its eye on. Three times stronger than steel and three times tougher than Kevlar, synthetic spider silk could find its way in a number of applications, from automotive, to military, to civil engineering. It might also prove to be the ultimate band aid. Last year, a new synthetic spider silk manufacturer was opened, a sign that spider silk is moving into a commercial territory fast.

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.