homehome Home chatchat Notifications


Petunia flowers guide researchers towards better, tastier cherry flavors

Sometimes, tasty treats lie where you least expect them.

Alexandru Micu
March 23, 2022 @ 9:31 pm

share Share

Research on the petunia flower may bear unexpected fruit for gourmands everywhere: better cherry and almond flavors.

Image via Pixabay.

A team of researchers from Purdue University has recently discovered the molecular recipe of one of the most coveted compounds today — benzaldehyde. Although you’ve most likely never heard of it before, you’re almost guaranteed to have tasted it. Benzaldehyde is a chemical compound used for some of the most popular food flavorings globally, including almond, raspberry, and cherry. Only vanillin, the aromatic compound that gives vanilla its characteristics, is more valuable in the food industry.

The new study describes the molecular structure of benzaldehyde, which was discovered during a study of the petunia’s smell.

Full of flavor

“Benzaldehyde is what gives that pleasant almond-like scent and is part of the aroma of many fruits,” said Natalia Dudareva, Distinguished Professor of Biochemistry in Purdue’s College of Agriculture, and lead author of the study. “That scent attracts pollinators and, in addition to those fruits, it is found in other plants, including petunias.”

Biochemists learn how to create different aromatic compounds in use today often from plants that are far removed from the ones those aromas are meant to recreate. These compounds then let us reproduce desirable tastes or smells and apply them to the products we crave. While entirely natural sources or aromatics are preferred, sometimes it isn’t viable to obtain the desired tastes this way.

Benzaldehyde “has an especially puzzling biosynthetic pathway” – the chemical process for forming a compound – according to Dudareva, one that has eluded researchers up to now. As such, various artificial chemical reactions were used at various points in its synthesis to produce the final aroma.

The researchers worked with petunias to uncover the natural biosynthetic pathway of benzaldehyde production. Armed with this knowledge, researchers will be able to transfer the genes that encode the process to yeast or other microbes to allow for industrial-scale production of the compound and its use in the food and beverage industry.

They report that the synthesis of this compound in petunia petals relies on an enzyme built from two subunits that must combine in equal amounts.

The team found that synthesis of benzaldehyde in petunia petals involves an enzyme consisting of two subunits that must combine in equal amounts to activate. This requirement is not commonly seen in the production of aromatic compounds, the researchers explain, which complicated efforts to understand this biosynthetic pathway up to today. Earlier research focused on looking for a single component, and this expectation likely ruined the efforts from the start.

“The gene directly responsible and enzyme needed for benzaldehyde synthesis were a mystery,” says said Xing-Qi Huang, co-author of the paper and postdoctoral researcher in Dudareva’s lab. “We tried newer techniques, but it took a classical approach to reveal it.”

“We estimate the size of the protein we are hunting in addition to other things we have learned about the pathway. We weren’t finding a good indication of a single protein within that estimate. However, we noticed the presence of two components of half the size of our estimate, and we thought maybe there are two subunits.”

Proteomic and genetic testing in the lab confirmed this hypothesis and led the team to the genes that encode the process. The team reports that they have mapped out “almost all” of the genes and pathways responsible for the petunia’s aromatic compounds. Further work will doubtlessly reveal the full extent of these pathways and lead us to a new way of creating high quality benzaldehyde — and tastier treats.

The paper “A peroxisomal heterodimeric enzyme is involved in benzaldehyde synthesis in plants” has been published in the journal Nature Communications.

share Share

These Revolutionary Maps Are Revealing Earth's Geological Secrets

This work paves the way for more precise and comprehensive geological models

These Cockatoos Prepare Their Food by Dunking it Into Water

Just like some of us enjoy rusk dipped in coffee or tea, intelligent cockatoos delight in eating rusk dipped in water.

Two tiger cubs were released in Siberia. They reunited as mates after a trek of 120 miles

Reuniting as mates, they’ve not only adapted to the wild but sparked new hope for the survival of Amur tigers.

Haunting video from NASA and ESA shows Greenland losing 563 cubic miles of ice in under 30 seconds

We all know (hopefully) that warming temperatures is driving ice loss. But seeing it makes it all the more disturbing. Don’t get me wrong, the visualization produced by NASA and ESA is beautiful, but what it’s showing is simply heartbreaking. Between 2010 and 2023, Greenland lost 563 cubic miles (2,347 cubic kilometers) of ice, which […]

Why aren't there giant animals anymore?

Contrary to Cope's Rule, today's animals, including polar bears, are shrinking due to climate change and human impacts.

The Neuroscience Behind Vermeer's Girl and Its Hypnotic Power

There's a reason why viewers can't look away from Vermeer's masterpiece.

NASA spots Christmas "tree" and "wreath" in the cosmos

NASA has captured the holiday spirit in space with stunning images of NGC 602 and NGC 2264.

How Our Human Lineage Broke All the Rules of Vertebrate Evolution

New study challenges traditional views on human evolution with "bizarre" findings.

A giant volcano spanning 280 miles and taller than Mt. Everest was discovered on Mars

Noctis Mons marks a monumental volcanic discovery on Mars, reshaping our understanding of the Red Planet's geology.

Microplastics Discovered in Human Brain Tissue: What Are The Health Risks?

From the air we breathe to the water we drink, microplastics infiltrate every corner of our lives—but what happens when they cross into our brains?