homehome Home chatchat Notifications


Scientists synthesize and image 5-ring graphite molecule in tribute to Olympics symbol

The 2012 London summer Olympic games are just a few weeks away, and as millions are set to flock to the city and other hundreds of millions will rejoice on the web and TV at the world’s grandest spectacle of athletic performance, it’s pretty clear this is one of the most anticipated events of the year. Every […]

Tibi Puiu
May 29, 2012 @ 1:56 pm

share Share

Olympicene

The 2012 London summer Olympic games are just a few weeks away, and as millions are set to flock to the city and other hundreds of millions will rejoice on the web and TV at the world’s grandest spectacle of athletic performance, it’s pretty clear this is one of the most anticipated events of the year. Every four-years people all over the world offer their tribute to the competition, including scientists too, of course.

“When doodling in a planning meeting, it occurred to me that a molecular structure with three hexagonal rings above two others would make for an interesting synthetic challenge,” says Professor Graham Richards, an RSC Council member.

“I wondered: could someone actually make it, and produce an image of the actual molecule?”

A joint collaborative scientific effort comprised of scientists at the Royal Society of Chemistry (RSC), the University of Warwick, and IBM Research Zurich, have  imaged the smallest possible five-ringed structure. The researchers employed synthetic organic chemistry to build the Olympicene molecule, while scanning tunneling microscopy was used to reveal a first glimpse of the molecule’s structure. To image the 1.2 nanometres in width molecule, about 100,000 times thinner than a human hair, at an unprecedented resolution, like captioned above, scientists at IBM Zurich made use of a complex technique known as noncontact atomic force microscopy.

“Alongside the scientific challenge involved in creating olympicene in a laboratory, there’s some serious practical reasons for working with molecules like this,” says Fox.

“The compound is related to single-layer graphite, also known as graphene, and is one of a number of related compounds which potentially have interesting electronic and optical properties.

“For example these types of molecules may offer great potential for the next generation of solar cells and high-tech lighting sources such as LEDs.”


source: Futurity

share Share

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

The flower from King Tut's tomb is flooding the internet but scientists say it's fake (thanks, reddit!)

The Egyptian blue lotus sold online isn't what you think. The real story behind this mythical plant is much more interesting though.

Microlightning in Water Droplets Could Have Sparked Life on Earth

New research suggests tiny electrical charges in water droplets could have fueled the chemical reactions that led to life.

Meet the Teen Who Can Add 100 Numbers in 30 Second and Broke 6 Guinness World Records for Mental Math

The Indian teenager is officially the world's fastest "human calculator".

Scientists Grow Diamonds at Atmospheric Pressure in Liquid Metal and It's a Game Changer

Synthetic diamonds aren't just for the deep Earth or mega high-pressure lab anymore.

What Do Ancient Egyptian Mummies Smell Like? "Woody", "Spicy" and Even "Sweet"

Scientists used an 'electronic nose' (and good old biological sniffers) to reveal the scents of ancient mummies.

Scientists Create a Material as Strong as Steel but Light as Styrofoam Using AI

Researchers create ultra-strong, lightweight carbon structures using AI and advanced manufacturing.

Scientists Crack the Secret to the Perfect Boiled Egg -- and It's Not What You Think

I mean, do you even have a mathematical model for your egg-boiling?

Self-healing Asphalt Could Prevent Potholes and Save Costs on Vehicle Repairs

Self-healing asphalt could save money, reduce emissions, and end the pothole plague.

This Futuristic Shape-Shifting 'Chainmail' Can Morph Between a Solid and a Liquid — and It’s Unlike Anything Ever Made

This chanmail-like material can morph and adapt like fluids or solids.