homehome Home chatchat Notifications


Sandwiching water between graphene makes square ice crystals at room temperature

In a most unexpected find, the same University of Manchester team that isolated graphene for the first time in 2003 found that water flattens into square crystals - a never encountered lattice configuration - when squeezed between two layers of graphene. The square ice qualifies as a new crystalline phase of ice, joining 17 others previously discovered. The finding could potentially improve filtration, distillation and desalination processes.

Tibi Puiu
March 27, 2015 @ 8:09 am

share Share

In a most unexpected find, the same  University of Manchester team that isolated graphene for the first time in 2003 found that water flattens into square crystals – a never encountered lattice configuration – when squeezed between two layers of graphene. The square ice qualifies as a new crystalline phase of ice, joining 17 others previously discovered. The finding could potentially improve  filtration, distillation and desalination processes.

Water, don’t be square

In square ice (left) water molecules are locked at a right angle. This looks nothing like the familiar hexagonal ice (right).

In square ice (left) water molecules are locked at a right angle. This looks nothing like the familiar hexagonal ice (right).

Previously, Andre Geim of the University of Manchester, UK – who shared a Nobel Prize in physics in 2010 for his groundbreaking graphene research – was left scratching his head after he found water vapours could pass through laminated sheets of graphene oxide. This was peculiar since helium couldn’t do this, a molecule that’s a lot smaller than water. To complicate the puzzle, liquid water – which is more tightly bonded than vapor – could also pass through the graphene oxide.

Then, simulations showed that water was forming square ice crystals between the graphene sheets. “But you never trust molecular-dynamics simulations,” says Geim. The team thus proceeded with a simple experiment. They dropped just one milliliter of water on a sheet of graphene (an one atom thick layer carbon arranged in a hexagon lattice), then placed a second one on top. As the water slowly evaporated, it was reduced to an one atom thick layer (just like the graphene!), all arranged in a square lattice at room temperature.

This electron scan microscope image clearly shows how the square ice looks like. Image: NATURE

This electron scan microscope image clearly shows how the square ice looks like. Image: NATURE

In normal conditions (temperature and pressure), the water molecule has a V shape, with the two hydrogen atoms bonded to the oxygen atom at a 105° angle. Imagine Mickey Mouse, that’s water! In ice form,  four bonds are usually arranged in a tetrahedral (pyramid) shape. In the square ice, however, all the atoms line up with a right angle between each oxygen–hydrogen bond.

After several iterations of the experiment, Geim’s team ended up with one, two or three atom thick layers of square ice crystals, all aligned one atop another. Remember, I mentioned the water molecules were squeezed by the graphene. In fact, the pressure exerted by the two layers could be more than 10,000 times that of  atmospheric pressure, according to the paper published in Nature. This happens because as the graphene sheets get closer, they distort each others’ electron cloud. The sheets are attracted to one another by a huge intermolecular force known as the van der Waals force, like “having millions of little springs holding them together,” according to Alan Soper, a physicist at the Rutherford Appleton Laboratory in Harwell, UK.

This might not be some queer finding confined to a laboratory setting. Square ice might be encountered in nature where enormous pressure is exerted over tight quarters. It just may be that we haven’t found it yet. On a practical level, the square ice method might  improve desalination filters based on graphene.

“Finding out how the water behaves in a capillary is a big part of what we need to do to make a good filter,” says Geim. “This is a very important step.”

 

share Share

Researchers Turn 'Moon Dust' Into Solar Panels That Could Power Future Space Cities

"Moonglass" could one day keep the lights on.

Ford Pinto used to be the classic example of a dangerous car. The Cybertruck is worse

Is the Cybertruck bound to be worse than the infamous Pinto?

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.