homehome Home chatchat Notifications


Scientists solve 100-year-old mystery of yellow desert glass prized by Egyptian pharaohs

These exceptions desert gems were created by a powerful meteorite impact.

Tibi Puiu
May 16, 2019 @ 8:29 pm

share Share

A piece of Libyan desert glass that weighs 22 grams and is about 55 mm wide. Credit: Wikimedia Commons.

A piece of Libyan desert glass that weighs 22 grams and is about 55 mm wide. Credit: Wikimedia Commons.

An exotic and beautiful type of glass found in the Sahara desert has a cosmic origin, according to a new study. After analyzing the chemical makeup of Libyan desert glass — a naturally occurring glass whose striking yellow color made it a much-sought-after decorative material — researchers found that it was produced by ancient meteorite impacts.

Cosmic glass fit for kings

Breastplate found in King Tutankhamun’s tomb. The scarab is made out of Libyan desert glass. Credit: Wikimedia Commons.

Breastplate found in King Tutankhamun’s tomb. The scarab is made out of Libyan desert glass. Credit: Wikimedia Commons.

The rare Libyan desert glass has been prized for its beauty for thousands of years. The glass — the purest natural silica glass ever found on Earth — is generally yellow in color and can be very clear, although most pieces are milky and may even contain tiny bubbles, white wisps, and inky black swirls.

By one estimate, over a thousand tons of Libyan desert glass are strewn across the deserts of eastern Libya and western Egypt. Most are the size of pebbles, although some chunks can have a considerable size and weight — the biggest piece ever found weighs around 26 kg.

Local inhabitants in the Neolithic period made tools out of the glass, and later the Egyptians used it to fashion jewelry. In fact, the carved stone on the breastplate of the famous Egyptian pharaoh Tutankhamun was made of Libyan desert glass. But these piece of glass were created long before King Tut was born — about 29 million years by one estimate.

Silica glass at the Great Sand Sea. Credit: Mohamed El-Hebeishy.

Silica glass at the Great Sand Sea. Credit: Mohamed El-Hebeishy.

 

For more than a hundred years, scientists have debated what forces could have created the enchanting glasses. There are two major hypotheses that explain their formation: either a meteor impact or an airburst (an atmospheric explosion which happens when meteoroids explode in the lower atmosphere) was responsible. A recently published study supports the former theory.

In a new study, Aaron Cavosie from Curtin University in Australia and colleagues performed chemical analyses of Libyan desert glass samples that unequivocally supports the meteorite formation theory.

While they were examining zircon minerals embedded in the glasses, the researchers found traces of another mineral called reidite. This mineral only forms in high pressure and heat — so far, it hasn’t been found anywhere other than meteorite impact craters.

“Both meteorite impacts and airbursts can cause melting, however, only meteorite impacts create shock waves that form high-pressure minerals,” says Cavosie.

“So finding evidence of former reidite confirms it was created as the result of a meteorite impact.”

Whatever meteorite impacted the desert all those millions of years ago, it must have caused a gigantic explosion. It vitrified (glassified) a huge area, resulting in a broad range of glasses ranging from cloudy dark to stunningly luminous lemon yellow — all depending on the kind of contaminants that dissolved into the liquid silica created by the powerful impact.

A variety of Libyan Desert Glasses. Credit: Corning Museum of Glasses.

A variety of Libyan Desert Glasses. Credit: Corning Museum of Glasses.

The findings published in the journal Geology are useful for establishing how often near-Earth objects come in contact with our planet’s surface. The study seems to suggest that the kind of impacts that are powerful enough to create Libyan desert glass are, thankfully, quite rare.

“Meteorite impacts are catastrophic events, but they are not common,” says Cavosie.

“Airbursts happen more frequently, but we now know not to expect a Libyan desert glass-forming event in the near future, which is cause for some comfort.”

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.