homehome Home chatchat Notifications


Hot spring bacteria need rare earths to survive

Researchers have found that methane-decomposing bacteria from hot springs need rare earths to produce the energy they need to survive. Rare Earth Elemenets (REE), or rare earth metals as they are sometimes called are a group of 17 chemical elements in the periodic table, specifically the so-called lanthanides plus scandium and yttrium. They are among […]

Mihai Andrei
November 6, 2013 @ 7:35 am

share Share

Researchers have found that methane-decomposing bacteria from hot springs need rare earths to produce the energy they need to survive.

zoom

Rare Earth Elemenets (REE), or rare earth metals as they are sometimes called are a group of 17 chemical elements in the periodic table, specifically the so-called lanthanides plus scandium and yttrium. They are among the most valuable chemical elements, as they are used in a myriad of applications, including in mobile telephones, display screens and computers and photovoltaic panels – they are indispensible to many organisms as well. A team of researchers has now discovered a bacteria which relies on rare earths to grow – in a hot spring. The fact that Methylacidiphilum fumariolicum requires rare metals such as lanthanum, cerium, praseodymium or neodymium to grow seems to suggest that the use of rare earths is possibly more widespread among bacteria than previously thought.

The 17 elements are not in fact as rare as you might think – they’re way more widespread than gold or platinum for example; the main problem lies within their relatively even distribution across all the crust, which makes mining economically viable only in a few places (most of which are in China).

However, in living organisms, rare earths are in fact rare. It takes a whole lot for them to dissolve in water so they don’t really go well with metabolic transformations. So when scientists from the Max Planck institute found them in a mudpot of volcanic origin in the Solfatara crater in Italy they were pretty surprised. After further research however, they found a microbe which not only tolerates rare earths, but absolutely needs them to thrive.

Methylacidiphilum fumariolicum belongs to a group of bacteria which live in extreme environments: temperatures of 50-60 degrees Celsius and pH of 2-4, sometimes even as low as 1, which is basically more acidic then sulphuric acid. These microbes take their energy requirements from methane – but they used a rather strange process to do it, using special enzyme, methanol dehydrogenase, which processes the methanol produced by methane decomposing – and that’s where the rare earths fit in.

“Suddenly, everything fit together,” explains Thomas Barends. “We were able to show that this mysterious atom must be a rare earth. This is the first time ever that rare earths have been found to have such a biological function.” Methylacidiphilum uses the rare earths lanthanum, cerium, praseodymium and neodymium in its methanol dehydrogenase instead of calcium. The bacterium needs them to produce energy from methane.

It’s not yet clear if this could provide an economic advantage in mining rare earths.

Scientific reference.

share Share

Horses Have a Genetic Glitch That Turned Them Into Super Athletes

This one gene mutation helped horses evolve unmatched endurance.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

Your Gum Is Shedding Microplastics into Your Saliva

One gram of chewing gum can release up to 600 microplastic particles into your body.

Octopus rides the world's fastest shark and nobody knows what's going on

A giant octopus rode a mako shark. No one knows why.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

The flower from King Tut's tomb is flooding the internet but scientists say it's fake (thanks, reddit!)

The Egyptian blue lotus sold online isn't what you think. The real story behind this mythical plant is much more interesting though.

Scientists Discover Cells That Defy Death and Form New Life After the Body Dies. Enter The "Third State"

Some cells reorganize into living 'bots' long after the organism perished.