homehome Home chatchat Notifications


Internal cell structures revealed by powerful 3D microscopy technique

The level of detail is really astonishing.

Alexandru Micu
January 17, 2020 @ 5:13 pm

share Share

A new imaging technique called cryo-SR/EM can capture cells in unprecedented, 3D detail.

Image credits D. Hoffman et al., (2020), Science.

The insides of living cells are very cramped, busy, but fascinating places. Sadly, because they’re so small, we’ve never been able to take a proper look at what’s going on inside there.

However, a new technique that combines both optical and electron microscopy may allow us to do just that, and in very high detail to boot.

Zoomed in

“This is a very powerful method,” says Harald Hess, a senior group leader at the Howard Hughes Medical Institute’s Janelia Research Campus, US.

Cryo-SR/EM combines data captured from electron microscopy with high-resolution optical microscope imaging to create detailed 3D models of the inside of cells.

Separately, these two approaches are powerful but limited. Optical (or light) microscopes can easily differentiate between individual cell structures when fluorescent molecules are attached to them — this is known as super-resolution (SR) fluorescence microscopy. While it does provide a clear picture, SR fluorescence microscopy isn’t able to show all the proteins swishing about inside a cell at the same time, making it hard to see how different bits interact with everything else.

On the other hand, electron microscopy (EM) can ‘see’ virtually everything that’s happening inside a cell in very high detail, but it can be too powerful for its own sake. The wealth of features inside a cell, all seen in very high detail, can make it difficult to understand what you’re looking at.

The team worked to combine these two techniques into a single one that enhances their strengths while balancing out their respective limitations.

Cryo-SR/EM involves first freezing a cell or group of cells under high pressure; this step instantly freezes their internal activity without allowing for ice crystals to form (these can easily rupture cellular structures). Next, the samples are placed into a cryogenic chamber where they’re imaged in 3D using SR fluorescence microscopy. Finally, the samples are removed, embedded in resin, and viewed under an electron microscope (this paper used a powerful device developed in Hess’ lab). This step involves shooting a beam of ions at the cell, producing images of successively layers of the cell. A computer program is used to piece these images back together into a 3D reconstruction.

For the final step, all the data is pooled together, creating a very high-detail 3D model of the cell’s interior.

Techniques such as cryo-SR/EM promise to let us peek into natural systems that were previously just too tiny to spot — and they let us do so in extreme detail. One particularly-exciting possibility is that cryo-SR/EM will allow researchers to observe snapshots of cellular processes as they unfold, propelling forward basic science and its applications in fields such as genetic engineering, bioengineering, biochemistry, and medicine.

The paper “Correlative three-dimensional super-resolution and block-face electron microscopy of whole vitreously frozen cells” has been published in the journal Science.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.