homehome Home chatchat Notifications


Very rare waterfall-climbing fish can walk like a salamander

Found in only eight caves on the border of Thailand and Myanmar, this eyeless fish can walk.

Tibi Puiu
March 25, 2016 @ 2:03 pm

share Share

Found in only eight caves on the border of Thailand and Myanmar, this eyeless fish can walk. It wouldn’t be the first, but what’s unique about it is the mode of locomotion that resembles that of land vertebrates like salamanders. Now, researchers have used high tech tools to image the creature’s skeleton and confirmed that it indeed bears land-walking characteristics, including a full-blown pelvis. Studying the creature might help science better understand one of the most epic journeys complex life has ever undertaken: from the sea to land.

Cryptotora thamicola. Credit: Danté Fenolio/Science Source

Cryptotora thamicola. Credit: Danté Fenolio/Science Source

Cryptotora thamicola was first discovered in 1985, native to a intricate cave system in Thailand.  Unlike other fish that linger in the caves’ pools, C. thamicola climbs slippery rocks with no consideration for the crashing water that hits it from above.

Many Asiatic fish species, like those of the genus Ophiocephalus, have evolved special cavities over the gills that are adapted to retain moisture and aid in respiration, allowing them to travel considerable land distances. These kind of ‘walking’ fish move themselves forward by using the pectoral fins like clutches in a hopping motion. C. thamicola, on the other hand, moves about in a way that hasn’t been encountered in any other species. It takes steps, for lack of a better word, moving one of its front fins in time with a back fin from the other side of the body. This diagonal two-step movement is very much akin to those used by certain amphibians like salamanders, despite C. thamicola is more closely related to a gold fish.

The fish is extremely rare with only 2,000 specimens at large, by the most recent estimates. As such, the Thai government is very protective; it doesn’t allow specimens being taken to labs for studying, nor are museums licensed to dissect preserved individuals. These perfectly reasonable limitations were circumvented by thinking outside the box and using all the modern tools at the researchers’ disposal.

Apinun Suvarnaraksha, a biologist at Maejo University in Thailand, filmed Cryptotora thamicola in its natural habitat from many angles. These were sent to Daphne Soares and Brooke Flammang, both of the New Jersey Institute of Technology where they have their own lab to study fish locomotion. After watching the first videos, the pair of researchers were flabbergasted.  “I was like, ‘Fish can’t do that,’” Flammang told Wired. “That’s ridiculous.”

The videos themselves, though telling, weren’t enough to thoroughly explain the fish. Suvarnaraksha was eventually granted permission to make a CT scan of one specimen from a local museum. Computer tomography is similar to X-ray, only instead of finding the outline of bones and organs, a CT scan machine forms a full three-dimensional computer model of a patient’s insides. Doctors can even examine the body one narrow slice at a time to pinpoint specific areas. This is an obviously non-destructive procedure.

The fish has a pelvis that's fused to its vertebral column -- very unfish like. Image: BROOKE FLAMMANG

The fish has a pelvis that’s fused to its vertebral column — very unfish like. Image: BROOKE FLAMMANG

The CT images were used to make a 3D model which showed all the bones and insides of Cryptotora thamicola. The waterfall-crawling fish’s pelvis is a complex of bones that is fused to the spine by elongated ribs. Strikingly, this is basically the same arrangement tetrapods evolved more than 350 million years ago to walk on land and pave the way for land life.

“Functionally, it makes perfect sense, but to see it in a fish is incredibly wild,” Dr. Flammang said.

“This research gives us insight into the plasticity of the fish body plan and the convergent morphological features that were seen in the evolution of tetrapods,” she added.

The findings appeared in the journal Scientific Reports.

 

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.