homehome Home chatchat Notifications


Sturdy virus might help us treat infectious diseases

Scientists are studying a virus that survives in extremely hot environments in the hope that it will give us better ways of fighting infectious diseases.

Mihai Andrei
May 27, 2015 @ 3:25 am

share Share

Scientists are studying a virus that survives in extremely hot environments, in the hope that it will give us better ways of fighting infectious diseases. SIRV2 might be the key to defeating future epidemics.

Edward H. Egelman with the massive Titan Krios microscope that’s buried in tons of concrete under Fontaine Research Park. Image via University of Virginia.

Extremophiles have fascinated biologists for many years. There are organisms that can survive in extremely acidic or basic environments, organisms that don’t require oxygen for growth, and of course, organisms that survive in extreme temperatures. The nonenveloped, rod-shaped virus SIRV2 (Sulfolobus islandicus) can survive very high temperatures, and the biotechnology industry has been studying it for quite a while. One application is the creation of artificial derivatives from proteins, named affitins, and now, another point of interest is discovering a way to prevent infectious agents from overcoming the body’s protective systems.

“What’s fascinating and bizarre is with the power to see how proteins and DNA may be put collectively in a way that’s utterly safe beneath the harshest circumstances conceivable,” said Edward H. Egelman, PhD, of the UVA Department of Biochemistry and Molecular Genetics. “We’ve discovered what appears to be a main mechanism of resistance – to heat, to desiccation, to ultraviolet radiation. And understanding that, then, we’ll go in many different directions, along with creating strategies to package deal deal DNA for gene treatment.”

SIRV2 lives in acidic scorching springs, where temperatures often range past 175 Fahrenheit (80 Celsius), and understanding how it survives in such an extreme environment can help us better understand how infectious agents can resist our bodies’ protective systems – and how we can stop that from happening.

“Some of these spores are liable for very, very horrific sicknesses which is perhaps arduous to cope with, like anthrax. So we current on this paper that this virus really options in a similar technique to a variety of the proteins present in bacterial spores,” he said. Spores are moreover formed by C. difficile, which now accounts for about 30,000 deaths per yr inside the U.S. and has been categorized by the Centers for Disease Control and Prevention as having a menace diploma of “urgent.” “Understanding how these bacterial spores work supplies us in all probability new skills to destroy them,” Egelman said. “Having this main scientific evaluation leads in a lot of, many directions, most of which might be unimaginable to predict, with regards to what the implications are going to be.”

It appears that for SIRV2, the key to survival lies in its DNA.

“This is, I really feel, going to highlight as quickly as as soon as extra the contributions she made, because of many people have felt that this A-form of DNA is just found inside the laboratory beneath very non-biological circumstances, when DNA is dehydrated or dry,” Egelman said. “Instead, it appears to be a standard mechanism in biology for shielding DNA.”

Researchers were able to study the virus using UVA’s new Titan Krios underground electron microscope. The Titan Krios is the most powerful and flexible high resolution electron microscope for 2D and 3D characterization of biological samples.

Journal Reference: Frank DiMaio, Xiong Yu2, Elena Rensen, Mart Krupovic, David Prangishvili, Edward H. Egelman. A virus that infects a hyperthermophile encapsidates A-form DNA. DOI: 10.1126/science.aaa4181

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.