homehome Home chatchat Notifications


Sturdy virus might help us treat infectious diseases

Scientists are studying a virus that survives in extremely hot environments in the hope that it will give us better ways of fighting infectious diseases.

Mihai Andrei
May 27, 2015 @ 3:25 am

share Share

Scientists are studying a virus that survives in extremely hot environments, in the hope that it will give us better ways of fighting infectious diseases. SIRV2 might be the key to defeating future epidemics.

Edward H. Egelman with the massive Titan Krios microscope that’s buried in tons of concrete under Fontaine Research Park. Image via University of Virginia.

Extremophiles have fascinated biologists for many years. There are organisms that can survive in extremely acidic or basic environments, organisms that don’t require oxygen for growth, and of course, organisms that survive in extreme temperatures. The nonenveloped, rod-shaped virus SIRV2 (Sulfolobus islandicus) can survive very high temperatures, and the biotechnology industry has been studying it for quite a while. One application is the creation of artificial derivatives from proteins, named affitins, and now, another point of interest is discovering a way to prevent infectious agents from overcoming the body’s protective systems.

“What’s fascinating and bizarre is with the power to see how proteins and DNA may be put collectively in a way that’s utterly safe beneath the harshest circumstances conceivable,” said Edward H. Egelman, PhD, of the UVA Department of Biochemistry and Molecular Genetics. “We’ve discovered what appears to be a main mechanism of resistance – to heat, to desiccation, to ultraviolet radiation. And understanding that, then, we’ll go in many different directions, along with creating strategies to package deal deal DNA for gene treatment.”

SIRV2 lives in acidic scorching springs, where temperatures often range past 175 Fahrenheit (80 Celsius), and understanding how it survives in such an extreme environment can help us better understand how infectious agents can resist our bodies’ protective systems – and how we can stop that from happening.

“Some of these spores are liable for very, very horrific sicknesses which is perhaps arduous to cope with, like anthrax. So we current on this paper that this virus really options in a similar technique to a variety of the proteins present in bacterial spores,” he said. Spores are moreover formed by C. difficile, which now accounts for about 30,000 deaths per yr inside the U.S. and has been categorized by the Centers for Disease Control and Prevention as having a menace diploma of “urgent.” “Understanding how these bacterial spores work supplies us in all probability new skills to destroy them,” Egelman said. “Having this main scientific evaluation leads in a lot of, many directions, most of which might be unimaginable to predict, with regards to what the implications are going to be.”

It appears that for SIRV2, the key to survival lies in its DNA.

“This is, I really feel, going to highlight as quickly as as soon as extra the contributions she made, because of many people have felt that this A-form of DNA is just found inside the laboratory beneath very non-biological circumstances, when DNA is dehydrated or dry,” Egelman said. “Instead, it appears to be a standard mechanism in biology for shielding DNA.”

Researchers were able to study the virus using UVA’s new Titan Krios underground electron microscope. The Titan Krios is the most powerful and flexible high resolution electron microscope for 2D and 3D characterization of biological samples.

Journal Reference: Frank DiMaio, Xiong Yu2, Elena Rensen, Mart Krupovic, David Prangishvili, Edward H. Egelman. A virus that infects a hyperthermophile encapsidates A-form DNA. DOI: 10.1126/science.aaa4181

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.