homehome Home chatchat Notifications


Tiny hairs on bats' wings act like airflow sensors - is this why they're such great flyers?

Apart from echolocation, bats have another ace up their sleeve that makes them formidable flying animals: tiny hairs that sense airflow and transmit this information to key areas of the brain. Here the info is decoded and used to steer the bats' flight for pinpoint accuracy. In combination with echolocation, this makes bats awesome hunters even in pitch black darkness.

Tibi Puiu
May 4, 2015 @ 8:17 am

share Share

Apart from echolocation, bats have another ace up their sleeve that makes them formidable flying animals: tiny hairs that sense airflow and transmit this information to key areas of the brain. Here the info is decoded and used to steer the bats’ flight for pinpoint accuracy. In combination with echolocation, this makes bats awesome hunters even in pitch black darkness.

Birds are great flyers, but few can rival the tenacious bat which hunts the tiniest prays: insects.  Image: PIXGOOD

Birds are great flyers, but few can rival the tenacious bat which hunts the tiniest pray: insects. Image: PIXGOOD

Neuroscientist Cynthia F. Moss of Johns Hopkins University and her colleagues first applied a depilatory cream to bat wings. The cream was applied briefly, then cleaned off, but it was enough to remove the microscopic hairs that cover the membrane on the bat’s wings. Experiments showed that the bats could still fly in a dark room, thanks to their echolocation, but not nearly as accurate. Their turns were much wider and the subtle precision of their mid-air dives was clearly affected.

Next, Moss strapped brain activity measurement devices to the heads of shorn and non-shorn North America’s big brown bats. The researchers applied puffs of air to their wings, while registering activity in the somatosensory cortex, where things like touch and pain are handled. The bats with missing hair showed no response, while non-shorn bats lit up in the respective region. In addition, the researchers discovered a large number of sensory cells called Merkel cells, which were shown to be associated with these micro hairs. Moss believes these cells transmit information about hair movement, but also during dexterous displays of flight like when clenching a prey or hitting the break mid-air.

The discovery of their hairs also raises a lot of important evolutionary questions. Bats are the only mammals capable of genuine self-powered flight. Other mammals, like so-called flying squirrels, can only glide. But it’s very likely that bat ancestors started out this way as well, gliding from tree to tree until it membranes developed flight capabilities. Over the years, the ability to execute fine maneuvers necessary to catch their favorite prey (insects) likely caused the bats to develop these highly valuable sensory hairs. When this happened is difficult to assess, however. Findings were published in Cell Reports.

“These findings can inform more broadly how organisms use touch to guide movement,” Moss said.

Just last week, ZME Science reported the discovery of a new peculiar dinosaur species called Yi Qi. The dinosaur had bat-like wings, but was covered both in feathers and hair. Whether it could fly or not is very disputed, but it definitely glided, as evidenced by it’s huge membrane that covered its upper limbs. Perhaps, Yi Qi might answer many evolutionary riddles currently surrounding bat flight.

share Share

This Stretchy Battery Still Works After Being Twisted, Punctured, and Cut in Half

Not the most energy dense but its ability to withstand abuse is unparalleled.

Yeast in Space? Scientists Just Launched a Tiny Lab to See If We Can Create Food in Orbit

Microbes can brew food in space — a game-changer for astronauts.

The UAE Wants AI to Write Its Laws — What Could Possibly Go Wrong?

But can machines really grasp justice, fairness, and human rights?

Scientists Invent a Color Humans Have Never Seen Before

Meet "olo": a vivid, hyper-saturated blue-green that can't be captured by screens or paint.

This Chewing Gum Can Destroy 95 Percent of Flu and Herpes Viruses

Viruses had enough fun in our mouths, it's time to wipe them out.

Conservative people in the US distrust science way more broadly than previously thought

Even chemistry gets side-eye now. Trust in science is crumbling across America's ideology.

We Could One Day Power a Galactic Civilization with Spinning Black Holes

Could future civilizations plug into the spin of space-time itself?

Scientists filmed wild chimpanzees sharing alcohol-laced fermented fruit for the first time and it looks eerily familiar

New footage suggests our primate cousins may have their own version of happy hour.

China’s Humanoid Robots Stumble, Break Down, and Finish the World’s First Robot Half Marathon

Bipedal bots compete with humans in first half-marathon race — with a bit of help from duct tape.

Here's why you should stop working out before bedtime

Even hours before bedtime, workouts can be a problem.