homehome Home chatchat Notifications


Scientists use lasers to unravel mysterious spider silk strength

Pound for pound, spider silk is one of the strongest materials in the world; it’s about five times stronger than a piano wire – and a piano wire has to put up with a lot of pressure. Researchers have long tried to develop materials which mimic the remarkable properties of spider silk, but only now […]

Mihai Andrei
January 28, 2013 @ 5:23 pm

share Share

Pound for pound, spider silk is one of the strongest materials in the world; it’s about five times stronger than a piano wire – and a piano wire has to put up with a lot of pressure. Researchers have long tried to develop materials which mimic the remarkable properties of spider silk, but only now did Arizona scientists announce that they are able to obtain a wide variety of elastic properties of the silk of several intact spiders’ webs using a sophisticated laser light scattering technique.

spider silk

“Spider silk has a unique combination of mechanical strength and elasticity that make it one of the toughest materials we know,” said lead researcher Jeffery Yarger of Arizona State University’s Department of Chemistry and Biochemistry, in a statement. “This work represents the most complete understanding we have of the underlying mechanical properties of spider silks.”

Scientists used extremely low power lasers (less than 3.5 milliwats) and aimed it at spider webs. Using this novel approach, they were able to actually map the stiffness of each web without disturbing it; they found variations among discreet fibers, junctions, and glue spots.

They studied webs from four different spider species: Nephila clavipes, A. aurantia (gilded silver face), L. Hesperus (western black widow) and P. viridans (green lynx spider) – all with remarkable silk properties. But they didn’t only study the stiffness, they also studied a property that spider silk displays, called supercontraction – a property unique to spider silk. Basically, it soaks up water when exposed to high humidity, and this absorbed water can lead to shrinkage in an unrestrained fiber-up to 50 percent. However, even in these conditions, spider silk is still versatile, and supercontraction helps the spider tailor the actual properties of the silk it produces during spinning.

“This study is unique in that we can extract all the elastic properties of spider silk that cannot and have not been measured with conventional testing,” said Yarger.

This new study could pave the way for new biomaterials to create tronger, stretchier, and more elastic materials.

The study was published in Nature Materials.

share Share

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.

Sharks Aren’t Silent After All. This One Clicks Like a Castanet

This is the first evidence of sound production in a shark.

Your Gum Is Shedding Microplastics into Your Saliva

One gram of chewing gum can release up to 600 microplastic particles into your body.

Octopus rides the world's fastest shark and nobody knows what's going on

A giant octopus rode a mako shark. No one knows why.

This Medieval Bear in Romania Was A Victim of Human Lead Pollution

One bear. Six years. One hidden history of pollution brought to light by a laser.

Scientists Discover Cells That Defy Death and Form New Life After the Body Dies. Enter The "Third State"

Some cells reorganize into living 'bots' long after the organism perished.

Some 31 million years ago, these iguanas rafted over 5,000 miles of ocean

New research reveals an extraordinary journey across the Pacific that defies what we thought was possible.

Magnolias are so ancient they're pollinated by beetles — because bees didn't exist yet

Before bees, there were beetles

The Arctic Seafloor Is Full of Life — And We’re About to Destroy It

The Arctic Ocean is more than just icy waters, it harbors vibrant ecosystems — but it also harbors valuable oil, gas, and rare earth elements.