homehome Home chatchat Notifications


Small cells allowed flowering plants to take over the world

Size isn't everything.

Elena Motivans
January 16, 2018 @ 12:57 pm

share Share

Flowering plants are the most common type of plant in the world right now. However, it has been a mystery how they became so successful so quickly. Charles Darwin himself called it an “abominable mystery” because he thought that their sudden success might weaken his theory of evolution. Now, researchers have found that flowering plants are so successful because of their cell size, which is smaller than any other plant type. Darwin is safe, after all.

Flowering plants are extremely diverse. Image credits: Alvesgaspar, Tony Wills.

Flowering plants are extremely diverse. Image credits: Alvesgaspar, Tony Wills.

Most of our plant-based food comes from flowering plants, and they are incredibly diverse, ranging from cacti to fruit trees. They sustain us and are the reason why we have so many diverse animals that have adapted particularly to eat certain food types.

Researchers have found recently that flowering plants have unprecedented photosynthetic rates, which explains why flowering plants can grow much more quickly than ferns and conifers. They could then be more successful and outcompete other plant types. Their success is due in a large part to very specialized leaves that allow them to photosynthesize quickly.

Now, Kevin Simonin from Sand Francisco State University and Adam Roddy from Yale University have discovered how flowering plants have such specialized leaves. They reviewed data on the genome size of hundreds of plants, including many different plant types, held at the Royal Botanic Gardens, Kew. The authors linked genome size with plant anatomy such as pores and veins on leaves.

The researchers discovered that the key is the genome size of the plant cells. Plant genomes decreased for the first time 140 million years ago, which is when the earliest flowering plants existed. The smaller genome size allows plant cells to be smaller and more cells can be packed into the same volume. The plants can have more cells for photosynthesis and delivering water and nutrients. Therefore, they can take up more carbon dioxide and gain more carbon.

Journal reference: Kevin A. Simonin, Adam B. Roddy. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLOS Biology, 2018; 16 (1): e2003706 DOI: 10.1371/journal.pbio.2003706

 

share Share

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.