homehome Home chatchat Notifications


See CRISPR in action in a new video

With amazing resolution down to the nanometer.

Elena Motivans
November 15, 2017 @ 2:38 pm

share Share

CRISPR is a powerful gene editing tool that can accurately add in or take out bits of DNA. There’s a lot of buzz about it because it is cheap, easy, and precise. There is also a lot of mystery surrounding CRISPR, perhaps because of its more controversial uses, such as plans of resurrecting the woolly mammoth or editing human embryos, and more sci-fi uses, like eliminating malaria and other diseases from mosquitoes and growing human organs in pigs. However, right now, it’s causing its biggest revolution in the lab, where scientists are now able to manipulate and control any gene easily.

CRISPR.

CRISPR is an acronym for Clustered Regularly Interspaced Short Palindromic Repeats. These are actually just sequences which repeat at regular intervals with spaces in-between them. Bacteria use these spaces to keep a genetic memory of viruses that have invaded it in the past. If that virus dares to show its face again, the system will recognize it and destroy it. The sequences can’t detect and destroy viruses by themselves, but they have two helpers: the enzyme Cas9 and guide RNA.

Researchers from Kanazawa University and the University of Tokyo in Japan have published a new study in Nature Communications in which they visualized CRISPR-Cas9 in action, cleaving a strand of DNA in two. They visualized the process for a more detailed look at what CRISPR-Cas9 actually does. The technique that they used is called high-speed atomic-force microscopy and uses mechanical probes to get good resolution images and videos down to a nanometer. Now, you can watch the CRISPR-Cas9 complex work in real-time and real-space.

CRISPR-Cas9 is like a hand with scissors. The guide RNA is the hand that directs the scissors to bits of DNA matching info in the genetic memory, leading it to the target. When found, Cas9 are like scissors that cut the DNA and destroy it. In this video, you can see the molecular scissors at work cleaving the DNA at the end of the clip. The original sequence can be destroyed or a new sequence can be patched into the gap.

It is pretty amazing that we can see exactly what happens when CRISPR-Cas9 is at work.

Journal reference: Shibata, M., Nishimasu, H., Kodera, N., Hirano, S., Ando, T., Uchihashi, T. & Nureki, O. (2017) Real-space and real-time dynamics of CRISPR-Cas9 visualized by high-speed atomic force microscopy. Nature Communications 8, 1430.

share Share

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

Scientists have found ingenious ways to weigh the tiniest building blocks of life

A Long Skinny Rectangular Telescope Could Succeed Where the James Webb Fails and Uncover Habitable Worlds Nearby

A long, narrow mirror could help astronomers detect life on nearby exoplanets

Scientists Found That Bending Ice Makes Electricity and It May Explain Lightning

Ice isn't as passive as it looks.

The Crystal Behind Next Gen Solar Panels May Transform Cancer and Heart Disease Scans

Tiny pixels can save millions of lives and make nuclear medicine scans affordable for both hospitals and patients.

Satellite data shows New York City is still sinking -- and so are many big US cities

No, it’s not because of the recent flooding.

How Bees Use the Sun for Navigation Even on Cloudy Days

Bees see differently than humans, for them the sky is more than just blue.

Scientists Quietly Developed a 6G Chip Capable of 100 Gbps Speeds

A single photonic chip for all future wireless communication.

This Teen Scientist Turned a $0.50 Bar of Soap Into a Cancer-Fighting Breakthrough and Became ‘America’s Top Young Scientist’

Heman's inspiration for his invention came from his childhood in Ethiopia, where he witnessed the dangers of prolonged sun exposure.