homehome Home chatchat Notifications


Scientists show how plants communicate -- and it looks amazing

I could watch these videos all day.

Mihai Andrei
September 14, 2018 @ 8:20 pm

share Share

Image credits: Simon Gilroy.

For a while now, researchers have been observing an intriguing phenomenon: when one part of a plant is under attack (say, by a hungry caterpillar), the defense systems are activated in other parts of the plant. But how do they know to do so? A new study sheds new light on that process, highlighting the impressive means through which plants communicate — and they have the amazing videos to go with it.

Plants don’t have nerves, but, as it turns out, they have something that’s surprisingly similar: a network of signaling cues, the same cues that many animals use in their own nervous systems.

“We know there’s this systemic signaling system, and if you wound in one place the rest of the plant triggers its defense responses. But we didn’t know what was behind this system,” explained botanist Simon Gilroy from the University of Wisconsin-Madison.

Gilroy and botanist Masatsugu Toyota, a former postdoc in Gilroy’s lab, wanted to see how this signal propagates.

“We do know that if you wound a leaf, you get an electrical charge, and you get a propagation that moves across the plant,” Gilroy adds. What triggered that electric charge, and how it moved throughout the plant, were unknown. But there was one likely culprit: calcium.

YouTube video

Calcium is found almost everywhere in cells, often acting in a sensor-like fashion. Because it carries an electrical charge, it can produce a signal about a changing environment. But the problem is that calcium is very difficult to study, spiking and dipping quickly, and researchers needed a way to study it in real time.

So they genetically engineered a mustard plant that would reveal changes in calcium concentration in real-time. The thus-developed plants produce a protein that fluoresces around calcium — basically, whenever there’s a spike in calcium, the plant lights up. They found that this allowed them to see the signaling process, which propagates at a speed of about 1 millimeter per second — lightning fast in the plant world, but still only a fraction of what we see in the animal world.

Toyota and Gilroy showed that when the plant is threatened (most commonly by insects) waves of calcium flow from the source of the attack throughout the plant. As soon as the defensive wave hits, defensive hormones are released in the plant in an attempt to stop the damage from taking place. These noxious hormones deter some of the plants’ predators from eating them.

The team also wanted to see what triggers this calcium release in the first place. Previous research had suggested that glutamate, an amino acid and significant neurotransmitter in both plants and animals, is the key. So they used mutant plants lacking glutamate receptors and found that the flow of calcium was also disrupted.

“Lo and behold, the mutants that knock out the electrical signaling completely knock out the calcium signaling as well,” says Gilroy.

So essentially, when the plant is bitten or attacked, it spills out glutamate from the wound site. From there, this triggers a wave of calcium flowing through the plant, which leads to activation of the plant’s hormonal defense mechanisms. It’s a remarkably complex and dynamic process, for a group of organisms which are often regarded as inert and lacking a nervous system.

In addition to the describing this process, the study videos can also help scientists visualize this astonishing mechanism — and let’s admit it, it’s also really nice to look at.

“Without the imaging and seeing it all play out in front of you, it never really got driven home — man, this stuff is fast!” he says.

The study has been published in the journal Science.

share Share

Scientists Discover a Surprising Side Effect of Intermittent Fasting — Slower Hair Regrowth

Fasting benefits metabolism but may hinder hair regeneration, at least in mice.

The Oldest Human Genomes in Europe Show How an Entire Branch of Humanity Disappeared

An ancient human lineage roamed Europe's frozen tundra for nearly 80 generations. Then they died out.

CCTV Cameras Are Everywhere — And They’re Changing How Your Brain Works

New research reveals how being watched triggers unconscious hyper-awareness.

Hidden for Centuries, the World’s Largest Coral Colony Was Mistaken for a Shipwreck

This massive coral oasis offers a rare glimmer of hope.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

This New Catalyst Can Produce Ammonia from Air and Water at Room Temperature

Forget giant factories! A new portable device could allow farmers to produce ammonia right in the field, reducing costs, and emissions.

New York City is introducing a congestion tax for cars. Can it really work?

NYC’s upcoming congestion pricing plan promises less traffic and cleaner air — but is the $9 toll fair for everyone?

Origami-Inspired Heart Valve May Revolutionize Treatment for Toddlers

A team of researchers at UC Irvine has developed an origami-inspired heart valve that grows with toddlers.

Scientists Say Antimatter Rockets Could Get Us to the Stars Within a Lifetime — Here’s the Catch

The most explosive fuel in the universe could power humanity’s first starship.

Scientists Unearth a 4,000-Year-Old Massacre So Brutal It May Have Included Cannibalism

It's Britain's bloodiest prehistoric massacre.