homehome Home chatchat Notifications


Scientists discover LUCA, common ancestor of all living things

The single-celled organism thrived on hydrogen gas in extremely hot deep-sea vents.

Tyler MacDonald
July 26, 2016 @ 9:01 pm

share Share

A new study suggests that that the Last Universal Common Ancestor (LUCA) of all living things is a four-billion-year old single-celled organism that lived in extremely hot hydrothermal vents.

A hydrothermal vent in the Northwest Eifuku volcano. Credit: National Oceanic and Atmospheric Administration (NOAA)

A hydrothermal vent in the Northwest Eifuku volcano. Credit: National Oceanic and Atmospheric Administration (NOAA)

All of the living organisms on Earth can be separated into three basic categories: eukaryotes, bacteria, and archaea. While eukaryotes, which encompass all plants and animals, possess a nucleus and membrane-bound organelles, bacteria and archaea do not. Despite these differences, scientists believe that all of these three groups originated from a common ancestor, which the new data suggests is LUCA.

Comparison of protein-coding genes in bacteria and archaea led to the identification of 355 genes that likely originated in LUCA. Further examination revealed a gene that codes for the reverse gyrase enzyme, which is only found in microbes that exists in extreme temperature conditions.

The genetic profile created in the study suggests that LUCA lived in deep-sea vents of extremely hot temperatures where it metabolized hydrogen gas for energy due to the lack of available oxygen. This hydrogen gas was likely created by the geochemical activity in the Earth’s crust.

LUCA’s cellular structures were probably composed of “inert” gases such as carbon dioxide and nitrogen. Enzyme creation likely stemmed from iron due to its free availability, and the lack of oxygen means that it wouldn’t have been turned into insoluble rust.

The results are interesting to say the least, but there is still no way to directly verify them. However, the new information can be used to create experiments that simulate the conditions that LUCA thrived in and attempt to recreate primitive life, although given the extreme conditions of hydrothermal vents, this will be a difficult task.

Journal Reference: The physiology and habitat of the last universal common ancestor. 25 July 2016. 10.1038/nmicrobiol.2016.116

share Share

The Oldest Dog Breed's DNA Reveals How Humans Conquered the Arctic — and You’ve Probably Never Heard of It

Qimmeq dogs have pulled Inuit sleds for 1,000 years — now, they need help to survive.

These fig trees absorb CO2 from the air and convert it into stone

This sounds like science fiction, but the real magic lies underground

What did ancient Rome smell like? Fish, Raw Sewage, and Sometimes Perfume

Turns out, Ancient Rome was pretty rancid.

Scientists Created an Evolution Engine That Works Inside Animal Cells Like a Biological AI

This system accelerates evolution in living cells and it's open source.

A Common DNA Sugar Just Matched Minoxidil in Hair Regrowth Tests on Mice

Is the future of hair regrowth hidden in 2-deoxy-D-ribose?

This Abandoned Island Off Venice Was a Plague Hospital, a Mental Asylum, and a Mass Grave

It's one of the creepiest places you can imagine.

The Strangest Microbe Ever Found Straddles The Line Between Life and Non-Life

A newly discovered archaeon blurs the boundary between cells and viruses.

Your Personal Air Defense System Is Here and It’s Built to Vaporize Up to 30 Mosquitoes per Second with Lasers

LiDAR-guided Photon Matrix claims to fell 30 mosquitoes a second, but questions remain.

Astronomers Found a Star That Exploded Twice Before Dying

A rare double explosion in space may rewrite supernova science.

Buried in a Pot, Preserved by Time: Ancient Egyptian Skeleton Yields First Full Genome

DNA from a 4,500-year-old skeleton reveals ancestry links between North Africa and the Fertile Crescent.