homehome Home chatchat Notifications


Scientists develop Cello, a programming language for bacteria

Biological engineers have created a programming language that allows them to rapidly and efficiently program and design DNA-encoded circuits, giving new functions to living cells. There are already a myriad of programming languages. Fortran and C++ allow for rapid computations, PHP is a scripting language for web development, Ruby is a popular object-oriented language – […]

Mihai Andrei
April 5, 2016 @ 11:37 am

share Share

Biological engineers have created a programming language that allows them to rapidly and efficiently program and design DNA-encoded circuits, giving new functions to living cells.

MIT biological engineers have developed a programming language – for living cells. Image credit: Janet Iwasa.

There are already a myriad of programming languages. Fortran and C++ allow for rapid computations, PHP is a scripting language for web development, Ruby is a popular object-oriented language – basically whatever people needed to do, they’ve created a programming language for it. But how would you create a programming language for biological cells?

Over the past decade, researchers have built a fair amount of genetic parts that can be programmed, including sensors, networks and even memory switches. But until now, there was no language developed specifically for this.

“It is literally a programming language for bacteria,” says Christopher Voigt, an MIT professor of biological engineering. “You use a text-based language, just like you’re programming a computer. Then you take that text and you compile it and it turns it into a DNA sequence that you put into the cell, and the circuit runs inside the cell.”

The good thing about it is that it’s very simple, without many of the intricacies often encountered in programming.

“You could be completely naive as to how any of it works. That’s what’s really different about this,” Voigt says. “You could be a student in high school and go onto the Web-based server and type out the program you want, and it spits back the DNA sequence.”

The language is based on Verilog, a language used to program electronic component, especially computer chips. To develop the new language, Voigt and his team designed their own computing elements such as logic gates and sensors that can be encoded in a bacterial cell’s DNA. The sensors can detect different substances or compounds, such as oxygen and glucose, as well as physical parameters such as light, temperature and acidity. It’s designed in a way which allows users to add their own sensors.

 “It’s very customizable,” Voigt says.

For now, all these features have been customized for the E. coli bacteria, one of the most common in studies, but researchers are working on expanding the language to other strands of bacteria.

Using this language, they’ve already programmed 60 circuits with different functions, and 45 of them worked correctly the first time they were tested – which is a remarkable achievement. The circuits were also strikingly fast, and the whole process promises to revolutionize DNA engineering. Before, it could take months or years to design such a circuit. Now, it can be done in less than a day.

The team is already looking at some potential applications, including:

  • bacteria that can be swallowed to aid in digestion of lactose;
  • bacteria that can live on plant roots and produce insecticide if they sense the plant is under attack;
  • and yeast that can be engineered to shut off when they are producing too many toxic byproducts in a fermentation reactor.

Journal Reference:

  1. A. A. K. Nielsen, B. S. Der, J. Shin, P. Vaidyanathan, V. Paralanov, E. A. Strychalski, D. Ross, D. Densmore, C. A. Voigt. Genetic circuit design automation. Science, 2016; 352 (6281): aac7341 DOI: 10.1126/science.aac7341

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.