homehome Home chatchat Notifications


Scientists modify plant mitochondrial DNA for the first time

This is huge news for the biotech industry.

Tibi Puiu
July 8, 2019 @ 6:05 pm

share Share

Japanese researchers at the University of Tokyo have recently achieved a major milestone in biotech. For the first time, a plant’s mitochondrial DNA has been edited. This offers important implications for securing the world’s food supply.

Infertile rice (right) stands straight, but fertile rice (left) bends under the weight of heavy seeds. Credit: Tomohiko Kazama.

This was the culmination of decades of research in the field. Nuclear DNA was first edited in the early 1970s, then came chloroplast DNA in 1988, and animal mitochondrial DNA in 2008.

Nuclear DNA is the most famous type of DNA — what most people recognize as the familiar double-helix molecule that contains the instructions for life. Nuclear DNA is inherited from both parents. However, mitochondria — the organelles that provide energy to cells — have their own DNA, known as the mitochondrial DNA (mtDNA). Mitochondrial DNA is generally solely passed on by the mother’s side, although there is recent evidence that, at least in some family lines, it can also be passed on from father’s side.

In animals, the mitochondrial genome is encased in a relatively small molecule, whose shape is comprised of a single circular structure. It’s also remarkably similar among many species.

“Even a fish’s mitochondrial genome is similar to a human’s,” said Shin-ichi Arimura, an Associate Professor at the University of Tokyo and lead author of the new study.

On the other hand, a plant’s mtDNA is a whole different story.

“The plant mitochondrial genome is huge in comparison, the structure is much more complicated, the genes are sometimes duplicated, the gene expression mechanisms are not well-understood, and some mitochondria have no genomes at all – in our previous studies, we observed that they fuse with other mitochondria to exchange protein products and then separate again,” Arimura said in a statement.

For a long time, the food and biotech industry has been seeking for a way to access and edit plant genomes in order to increase crop resilience and yield. One prime example that illustrates the potentials of mtDNA editing is the 1970 fungal infection of Texas corn farms. Virtually all corn that had the same gene in their mtDNA genome were killed by the fungus, so corn with that specific gene has not been planted since.

“We still have a big risk now because there are so few plant mitochondrial genomes used in the world. I would like to use our ability to manipulate plant mitochondrial DNA to add diversity,” said Arimura.

In order to edit the plant genome, Arimura and colleagues adapted a technique designed for editing the mtDNA genomes of animal cells growing in a dish. The method, known as mitoTALENs, involves using a single protein to locate the mtDNA genome, cut the DNA at the desired gene, and delete it.

In an experiment that demonstrated the new method, Arimura’s team removed an mtDNA gene in three germlines of rice and three lines of rapeseed. This particular gene is known to cause cytoplasmic male sterility (CMS).

“While deleting most genes creates problems, deleting a CMS gene solves a problem for plants. Without the CMS gene, plants are fertile again,” said Arimura.

“This is an important first step for plant mitochondrial research,” he added.

The findings appeared in the journal Nature Plants.

share Share

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

The Oldest Dog Breed's DNA Reveals How Humans Conquered the Arctic — and You’ve Probably Never Heard of It

Qimmeq dogs have pulled Inuit sleds for 1,000 years — now, they need help to survive.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

After 700 Years Underwater Divers Recovered 80-Ton Blocks from the Long-Lost Lighthouse of Alexandria

Divered recover 22 colossal blocks from one of the ancient world's greatest marvels.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.

Ozempic Is Changing More Than Waistlines as Scientists Wise Up to Concerning Side Effects

But GLP-1 drugs also offer many benefits beyond weight loss.

Researchers stop Parkinson's symptoms in mice using a copper supplement. Could humans be next?

Could we stop Parkinson's by feeding neurons copper?

There's a massive, ancient river system under Antarctica's ice sheet

This has big implications for our climate models.

I Don’t Know Who Needs to Hear This, But It's Okay to Drink Coffee in the Summer

Finally, some good news.