homehome Home chatchat Notifications


Meet the first fully warm-blooded fish: the opah

Though it's a deep ocean fish, the slender opah is actually fully warm blooded - the first of its kind discovered so far. This remarkable insight was made by accident after researchers at the National Oceanic and Atmospheric Administration dissected the fish and noticed its blue and red blood vessels were located inside the gills, rather than in the fish's swimming muscles. Tuna or sharks, which both have the same vessels but not arranged in the same way, cool their blood once it reaches the gills for oxygen reloading. The opah's vessels are interwoven inside the gill like a net, which means the the veins that carry warm blood away from the hot muscles are interwoven with the arteries that carry cold blood in from the gills. This makes all the difference. Running so close to each other, the warm blood from the heart heats the cold blood from the gills. This way the Opah is 5 degrees Celsius warmer than its surroundings waters!

Tibi Puiu
May 15, 2015 @ 6:38 am

share Share

Though it’s a deep ocean fish, the slender opah is actually fully warm blooded – the first of its kind discovered so far. This remarkable insight was made by accident after researchers at the National Oceanic and Atmospheric Administration dissected the fish and noticed its blue and red blood vessels were located inside the gills, rather than in the fish’s swimming muscles. Tuna or sharks, which both have the same vessels but not arranged in the same way, cool their blood once it reaches the gills for oxygen reloading. The opah’s vessels are interwoven inside the gill like a net, which means the the veins that carry warm blood away from the hot muscles are interwoven with the arteries that carry cold blood in from the gills. This makes all the difference. Running so close to each other, the warm blood from the heart heats the cold blood from the gills. This way the Opah is 5 degrees Celsius warmer than its surroundings waters!

Researchers Nick Wegner holding a opah.  Image: National Geographic

Researchers Nick Wegner holding a opah. Image: NOAA FISHERIES WEST COAST

Nicholas Wegner from the National Oceanic and Atmospheric Administration and colleagues were on research trip when they happened to catch some opah fish. While they were at it, they decided to study the fish closely – why not? They eventually found much more than they bargained for.

“That was when we realised what it was capable of,” Wegner said.

For instance, its frisbee-shape isn’t quite an indicator that this is a fast, ferocious predator. But its appearance is deceiving, as the researchers later learned after they tagged the fish with instruments.

“That’s what’s really blew my mind about this discovery,” says Wegner. “Just from looking at it, I really thought it was a slow, sluggish, deep-water fish that doesn’t do very much. But all indications are that this is a very fast fish and an active predator. We’ve put some tags on them to show that they migrate thousands of kilometres.”

The opah is as close to a full-body warm-blooded fish as science has yet discovered. Image: NOAA FISHERIES WEST COAST

The opah is as close to a full-body warm-blooded fish as science has yet discovered. Image: NOAA FISHERIES WEST COAST

Besides the net-woven blood vessels, the fish also retains heat with the help of an extra layer of fat which insulates the heart from the gills. The same applies to the pectoral muscles , where most of the heat is generated by its fins, from the surrounding water. This way, the opah’s heart, brain and muscles are all warmer than the surrounding waters, the researchers report in Science. Not even the great white shark has a warm heart.

“That’s why opah can stay at depth,” says Wegner. “These guys are specialised for living deeper than those other predators.”

share Share

Neanderthals Turned Cave Lion Bone into a 130,000-Year-Old 'Swiss Army Knife'

130,000-year-old discovery reveals a new side to our ancient cousins.

This Bionic Knee Plugs Into Your Bones and Nerves, and Feels Just Like A Real Body Part

No straps, no sockets: MIT team created a true bionic knee and successfully tested it on humans.

This New Bioplastic Is Clear Flexible and Stronger Than Oil-Based Plastic. And It’s Made by Microbes

New material mimics plastic’s versatility but biodegrades like a leaf.

Researchers Recreate the Quintessentially Roman Fish Sauce

Would you like some garum with that?

Why Warmer Countries Have Louder Languages

Language families in hotter regions evolved with more resonant, sonorous words, researchers find.

What Happens When You Throw a Paper Plane From Space? These Physicists Found Out

A simulated A4 paper plane takes a death dive from the ISS for science.

A New Vaccine Could Stop One of the Deadliest Forms of Breast Cancer Before It Starts

A phase 1 trial hints at a new era in cancer prevention

After 700 Years Underwater Divers Recovered 80-Ton Blocks from the Long-Lost Lighthouse of Alexandria

Divered recover 22 colossal blocks from one of the ancient world's greatest marvels.

Scientists Discover 9,000 Miles of Ancient Riverbeds on Mars. The Red Planet May Have Been Wet for Millions of Years

A new look at Mars makes you wonder just how wet it really was.

This Is Why Human Faces Look So Different From Neanderthals

Your face stops growing in a way that neanderthals' never did.