homehome Home chatchat Notifications


Laziness could save a fish’s life: a case for establishing marine reserves

Evolution causes these fish to move less so they have a better chance of survival.

Elena Motivans
March 24, 2017 @ 9:15 pm

share Share

Currently, as many fish as possible are caught in the ocean. More than 85% of the world’s fisheries have been pushed to or past their limit. They need serious help to bounce back. These fish are important for the functioning of the ocean and for the people who depend on them for their food. One way to help the fish is to create marine reserves. Currently, only 0.8% of the world’s oceans are part of marine protected areas. And only 10% of these (so 0.08% of all the world’s oceans) are actually marine reserves, meaning that you are not allowed to fish in them at all.

However, we should think about creating more of them! New research has found that marine reserves help the conservation of fish. Fish evolve to move less and stay in the safe zones. The less mobile fish will survive and pass this behaviour on to their offspring. Eventually, the overall amount of fish in the reserve will increase.

We are overfishing the oceans. Image credits: C. Ortiz Rojas.

Even though marine reserves seem like they would only protect reef fish, they are also useful to conserve tuna and sharks. Researchers from UBC’s Biodiversity Research Centre in collaboration with the Sea Around Us project modeled the evolution of skipjack tuna, Bluefin tuna, and great white sharks’ movements in response to the creation of marine reserves.

Safe zone

Some commercial fish aren’t safe wherever they swim. For instance, fishing equipment can catch tuna in every part of their range. More and larger marine reserves could act as a buffer so that tuna have a safe zone. Otherwise, tuna, especially Bluefin, could be fished to extinction. Their populations are already highly strained. When thinking of solutions to deal with this problem, fisheries management hasn’t really taken the evolution of the fish into account. However, evolution could actually make a large difference on fish conservation. It could even improve fisheries’ catches in the process.

If a marine reserve is established, fish evolve to move less outside of it. Image credits: Max Pixel.

The reason why marine reserves work for conserving fish has to do with evolution. A fish’s likelihood of swimming away from an area is often heritable. The fish that stay in the reserves more often survive, but fishing is banned in that region. They can reproduce, because they are alive, and the same behaviour is passed on to their offspring. Active swimmers would be less common because they are eaten more often and don’t survive to breed. After a while, low movement would be quite common and cause an increase of fish in a reserve.

Tuna & sharks

Marine reserves seem to be a more important tool than was thought to prevent extinction and protect biodiversity. Restricted movement caused by evolution increased the number of fish inside a reserve up to 50 years after its establishment. Skipjack tuna were the quickest to move less; it would take them 10 years to evolve the behaviour. Great white sharks took the longest time to become less mobile, up to 50 years. Skipjack tuna evolve the behaviour more quickly because they have a shorter lifespan.

Active tuna wouldn’t last very long. Image credits: aes256.

This evolution of decreased movement in the fish can make marine reserves more effective. Even for great white sharks, marine reserves were good for conservation when they moved less or marine reserves were large.The higher the fishing pressure close to the reserves, the faster the fish change their behaviour to stay in the safe zone. Marine reserves can contribute to increasing fishing yield due to spillover, the increase in catches next to reserves. Currently, most marine reserves are pretty small and tuna and sharks swim a lot. Larger and marine reserve should be made to help protect these species. If we don’t take necessary measures, we could lose tuna from our plates and our seas.

Journal reference: J.A. Mee. 2017. Evolution of movement rate increases the effectiveness of marine reserves for the conservation of pelagic fishes, Evolutionary Applications.

 

 

share Share

AI Helped Decode a 3,000-Year-Old Babylonian Hymn That Describes a City More Welcoming Than You’d Expect

Rediscovered text reveals daily life and ideals of ancient Babylon.

Peeling Tape Creates Microlightning Strong Enough To Power Chemistry

Microlightning from everyday tape may unlock cleaner ways to drive chemical reactions.

Menstrual Cups Passed a Brutal Space Test. They Could Finally Fix a Major Problem for Many Astronauts

Reusable menstrual cups pass first test in space-like flight conditions.

The Fungus Behind the Pharaoh’s Curse Might Help Cure Leukemia

A deadly fungus found in ancient tombs yields a powerful new anti-leukemia compound.

The Woman of Margaux: Reconstructing the Face and Life of a 10,500-Year-Old Hunter-Gatherer

A new facial reconstruction challenges old ideas about Europe’s ancient inhabitants

An Overlooked Hill in Bolivia Turned Out to Be One of the Andes’ Oldest Temples

A temple bigger than a city block was hiding in plain sight for over 1,000 years.

One-Third of the World's Scavengers are Disappearing And This Could Trigger a Human Health Crisis

Nature’s least loved animals are dying fast. This could make the environment stinky and pathogens unstoppable.

Scientists Catch Two Wild Orcas "French Kissing" And It Might Mean More Than You Think

Scientists believe the habit is a part of social bonding.

Coolness Isn’t About Looks or Money. It’s About These Six Things, According to Science

New global study reveals the six traits that define coolness around the world.

Ancient Roman Pompeii had way more erotic art than you'd think

Unfortunately, there are few images we can respectably share here.