homehome Home chatchat Notifications


How do ants crawl on walls? This biologist explains

Ant feet are equipped with an array of tools – from retractable sticky pads to claws to special spines and hairs – enabling them to defy gravity and grip virtually any surface.

Deby Cassill
September 13, 2022 @ 2:09 pm

share Share

Credit: Pixabay.

When I first started my job as a biologist at the University of South Florida, I drove my Jeep to a grassy field, dug up a mound of fire ants and shoveled it into a 5-gallon bucket. Immediately, thousands of ants swarmed out of the soil and up the walls of the bucket headed for freedom. Luckily I had a lid.

How do ants make climbing walls, ceilings and other surfaces look so easy? I’ve been studying ants for 30 years, and their climbing abilities never cease to amaze me.

Worker ants – who are all female – have an impressive toolbox of claws, spines, hairs and sticky pads on their feet that enable them to scale almost any surface.

Human hands vs. ant feet

To understand ant feet, it helps to compare them with human hands. Your hand has one broad segment, the palm. Sprouting from your palm are four fingers and an opposable thumb. Each finger has three segments, while your thumb has only two segments. A hard nail grows from the tips of your fingers and thumb.

Humans have two hands – ants have six feet. Ant feet are similar to your hands but are more complex, with an additional set of weird-looking parts that enhance them.

A microscopic view of an ant's foot, with segments numbered. Labeled are claw, thick spine, thin spine and hairs.
A closeup view of one multisegmented ant foot. Each foot is lined with spiky tools that help grip almost any surface. Deby Cassill, CC BY-ND

Ant feet have five jointed segments, with the end segment sporting a pair of claws. The claws are shaped like a cat’s and can grip irregularities on walls. Each foot segment also has thick and thin spines and hairs that provide additional traction by sticking into microscopic pits on textured surfaces like bark. Claws and spines have the added benefit of protecting ant feet from hot pavement and sharp objects, just as your feet are protected by shoes.

But the feature that truly separates human hands from ant feet are inflatable sticky pads, called arolia.

Sticky feet

Arolia are located between the claws at the tip of every ant foot. These balloonlike pads allow ants to defy gravity and crawl on ceilings or ultrahard surfaces like glass.

A microscopic view of a fire ant's foot. The end shows two retracted claws revealing an inflated pillow like structure.
Inflatable sticky pads bring the cling. Deby Cassill, CC BY-ND

When an ant walks up a wall or across a ceiling, gravity causes its claws to swing wide and pull back. At the same time, its leg muscles pump fluids into the pads at the end of its feet, causing them to inflate. This body fluid is called hemolymph, which is a sticky fluid similar to your blood that circulates throughout an ant’s body.

After the hemolymph pumps up the pad, some of it leaks outside the pad, which is how ants can stick to a wall or a ceiling. But when an ant picks up its foot, its leg muscles contract and suck most of the fluid back into the pad and then back up the leg. This way an ant’s blood is reused over and over – pumped from the leg into the pad, then sucked back up the leg – so none is left behind.

Ant feet in action on glass. Courtesy of Deby Cassill.

Ants are feather-light, so six sticky pads are enough to hold them against the pull of gravity on any surface. In fact, at home in their underground chambers, ants use their sticky pads to sleep on the ceiling. By sleeping on the ceiling, ants avoid the rush-hour traffic of other ants on the chamber floors.

A unique gait

When you walk, your left and right feet alternate so one is on the ground while the other is in the air, moving forward. Ants also alternate their feet, with three on the surface and three in the air at a time.

A computer simulation showing an ant’s special walk. Created by Shihui Guo.

The walking pattern of ants is unique among six-legged insects. In ants, the front and back left feet are on the ground with the middle right foot, while the front and back right feet and the middle left foot are in the air. Then they switch. It’s fun to try to copy this triangular pattern using three fingers on each hand.

The next time you see an ant crawling up a wall, look closely and you might witness some of these fascinating features at work.


Hello, curious kids! Do you have a question you’d like an expert to answer? Ask an adult to send your question to CuriousKidsUS@theconversation.com. Please tell us your name, age and the city where you live.

And since curiosity has no age limit – adults, let us know what you’re wondering, too. We won’t be able to answer every question, but we will do our best.The Conversation

Deby Cassill, Associate Professor of Integrative Biology, University of South Florida

This article is republished from The Conversation under a Creative Commons license. Read the original article.

share Share

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.

These "Ants" Use Ultrablack to Warn Predators — and Stay Cool

Velvet ants, actually flightless wasps, boast an ultrablack exoskeleton thanks to dense nanostructures.

These Squirrels Are Hunting and Eating Meat. Scientists Are Stunned — And They Have Video Proof

California ground squirrels surprise scientists with their newly discovered taste for mammalian flesh.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

This Hornet Can Drink 80% Alcohol Without Ever Getting Drunk and Scientists Finally Know Why

Oriental hornets never get intoxicated with alcohol no matter how strong the alcohol or how long they drink.

This Tiny Microbe Can Withstand Extreme Radiation That Would Obliterate Humans. Here's How It Might Protect Astronauts on a Trip to Mars

Could a humble bacterium hold the key to surviving cosmic radiation?

The heart may have its own "mini-brain": a nervous system that controls heartbeat

Somewhere within the heart, there may be a "little brain".

Crocodile Scales Form in a Surprising Way That Has Nothing to Do with Genetics

The surprising way crocodile scales form offers a glimpse into how evolution works beyond genes.