homehome Home chatchat Notifications


New, different type of life could be living in our guts

In recent years, we’re finding out more and more that our guts are actually an impressive ecosystem, influencing not only how we digest our food, but also how we think and behave. But now, researchers have taken it even one step further: we may need to define a whole new life form to describe these […]

Mihai Andrei
November 16, 2015 @ 11:54 am

share Share

In recent years, we’re finding out more and more that our guts are actually an impressive ecosystem, influencing not only how we digest our food, but also how we think and behave. But now, researchers have taken it even one step further: we may need to define a whole new life form to describe these tiny residents.

Fecal bacteria. Image via Wikipedia.

The whole digestive tract is about nine metres (30 feet) long, and it’s quite a unique environment, especially in terms of biochemistry; this uniqueness generated some rather strange relationships. Not only do microorganisms live in our stomach and they can help us digest food better, but they can even affect how we think. Previous studies have suggested gut bacteria may communicate directly with the brain. Notably, some people with liver disease experience positive mental ability change after given antibiotics. But as if that wasn’t enough, a team from the Pierre and Marie Curie University in Paris, France reported that they found DNA sequences in these microorganisms that are beyond the three forms of life that we currently know of.

Basically, the three domain system divides cellular life forms into archaea, bacteria, and eukaryote domains. Archaea are somewhat similar to bacteria, but they have a different biochemical system and can survive in more extreme environments, bacteria are well… bacteria, and eukaryote is everything else: fungi, plants and animals. Now, it’s important not to get ahead of ourselves, but if their study is correct, then we may have to re-think the complexity of our gut system, which makes its interaction with the rest of our body even harder to understand.

Researchers analyzed 230,000 DNA sequences that are related to known sequences in those 86 gene families, using these sequences as a starting point for their next analysis, through which they found an additional 80,000 stretches of microbial DNA that belonged in the 86 gene families. But in one third of this DNA, the structure was very strange, not belonging to any known domain of life. All in all, 40% of the DNA was previously unknown, a high enough figure to justify thinking about a new domain of life.

“Given that archaeal and bacterial homologs shared at least 60 % sequence identity, any environmental homologs of these gene families presenting > 40 % divergence (i.e., <60 % identity) would be more divergent from its homologs than sequences from two distinct domains of life. Such a high divergence, for these families, deserves to be considered significant, possibly hinting at very divergent organismal lineages, and/or reflecting a major genetic plasticity for these functionally important, apparently ancient gene families.”

But before this is actually confirmed, researchers have to isolate and study these organisms in a lab environment, which of course, is no easy feat.

“These results underline how limited our understanding of the most diverse elements of the microbial world remains, and encourage a deeper exploration of natural communities and their genetic resources, hinting at the possibility that still unknown yet major divisions of life have yet to be discovered,” concludes the report.

Journal Reference: Philippe Lopez, Sébastien Halary and Eric Bapteste – Highly divergent ancient gene families in metagenomic samples are compatible with additional divisions of life. Biology Direct 2015, 10:64 doi:10.1186/s13062-015-0092-3

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.