homehome Home chatchat Notifications


World's first blue chrysanthemums are lab-engineered but look really pretty

More like GMawwww's.

Alexandru Micu
July 27, 2017 @ 8:07 pm

share Share

Naturally blue chrysanthemums are now reality — and it’s all because biochemists at the National Agriculture and Food Research Organization in Tsukuba, Japan toyed around with the flower’s genome.

Sei Arabella coloration.

Image modified after N. Noda et al., 2017.

Blue flowers aren’t that common in nature. Off the top of my head I could recall… morning glory? Maybe forget-me-not’s? Those might be blue. For some reason, it’s just not very popular a color with good old mother nature. And statistically unsurprising, there are many more species that definitely aren’t naturally blue; among then, the chrysanthemum, which flower in shades of pink and red.

However, that’s about to change. Naonobu Noda, a plant biologist at the National Agriculture and Food Research Organization in Tsukuba, Japan, has coaxed a strain of chrysanthemum to turn blue by adding two genes to the plant’s genome.

Heisenberg-blue

According to a color scale put together by the Royal Horticultural Society, most flowers you think are blue are actually shades of violet or purple. Florists and breeders are keen to get their hands on new colors and varieties of plants, and blue is especially sought-after because of its rarity.

However, turning flowers blue (naturally blue, not by dying them) has proven ridiculously difficult up to now. ‘True’ blues, as described by the Royal Horticultural Society’s chart, requires a complex interplay of chemical compounds. The molecules that lend petals, stem, and fruit their colors are known as anthocyanins. These mostly consist of aromatic ring compounds that can shine red, purple, or blue depending on what extra compounds — like sugars or groups of atoms — are tied to them.

Intra-cell conditions, like wall thickness, size, or shape, also factor in, however: so simply taking the anthocyanins from a blue flower and grafting them into a new one won’t turn it blue.

Noda overcame these issues by genetically tailoring reddish chrysanthemums to be blue. First, he grafted a gene from a bluish flower called the Canterbury bell into a chrysanthemum to make it take a purple hue instead. Then, Noda and his colleagues mixed in a second gene, this one taken from the blue-flowering butterfly pea. This would dictate the addition of a sugar to the plant’s anthocyanin, taking the flower from purple to full on blue. The team believed a third gene would be required to reach this step, but chemical analyses later revealed that chrysanthemums naturally produce a colorless component that reacted with the modified anthocyanin to create blue.

Next, Noda’s team aim on creating blue chrysanthemums that can’t reproduce, so they can be safely commercialized. How commercially successful the flowers turn out to be is still anyone’s bet, given that GMOs are still a hotly debated topic. Perhaps the blue chrysanthemums will finally help swing the public vote — one way or another.

The paper “Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism” has been published in the journal Science Advances.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.