ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science

With Flink, researchers will be able to 3D print living minifactories

Ever needed a tiny, living factory? Of course you did, you just didn't know it.

Alexandru MicubyAlexandru Micu
December 4, 2017
in Biology, News, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

Material scientists are bringing life to 3D printing by mixing bacteria in the inks. Christened ‘Flink’, the compound shows a lot of promise in the fields of medicine and biotechnology.

Flink Rings.
3D-printed circles printed from cellulose-producing bacteria.
Image credits Manuel Schaffner, Patrick A. Rühs.

Tired of creating objects out of old, boring, downright inanimate matter? Researchers from the Swiss Federal Institute of Technology (ETH Zurich) has got you covered. Led by Professor André Studart, Head of the Laboratory for Complex Materials, the team have developed a novel 3D printing system that uses bacteria-laden ink. It can be used to print miniature biochemical factories whose properties and effects depend on the species contained in the ink.

Functional living ink, the Flink

The base compound of Flink is a biocompatible hydrogel, made of hyaluronic acid and pyrogenic silica. The hydrogel’s role is to keep everything together and maintain the structure of the printed objects. A culture medium is mixed in with this framework, keeping the bacteria in the ink alive and kicking. The final ingredient is the bacteria strain. The finished ink can be then used to print any structure, akin to a normal 3D-printing plastic or metal ink.

Xylinum Flink.
For all images: A. xylinum Flink; Bacterial cellulose (blue) visualized with a specific fluorescent dye. (D) Flink used to generate a 3D-printed scaffold in the shape of a T-shirt. (E) Bacterial cellulose nanofibril network under SEM. (F) Flink viscosity and oxygen level’s effect on nanocellulose production. Dense cellulose networks are only present in regions of high oxygen levels and low to medium viscosities. (G) Flink 3D-print on a doll’s face. Cellulose growth forms a reinforced hydrogel that, after removal of all biological residues, can serve as a skin transplant.
Image credits André R. Studart et al., 2017, Science.

Up to four different inks (each containing different species) of various concentrations can be combined in a single pass, leading to a great possible range of properties for the end objects. After taking some time to settle in, these bacterial strains will go ‘online’, either producing, consuming, or otherwise interacting with compounds in their environment. In effect, they’ll work like tiny, living factories whose internal processes can be altered by changing their bacterial make-up.

The working concept behind Flink has so far been tested using the bacteria Pseudomonas putida and Acetobacter xylinum. The former can metabolize phenol (carbolic acid), a widely used industrial commodity that comes in a volatile, solid form. Phenol is quite toxic, and its predisposition to turning gaseous makes it very hazardous to work with, increases the likelihood of spillages, and complicates disposal. Xylnium is known for its high-purity nenocellulose secretions. It comes in very handy for dressing wounds and burns, as the substance is highly stable, helps relieve pain, and retains moisture.

Getting the gel’s viscosity just right was a particular challenge, according to co-author Manuel Schaffner. It has to be fluid enough to easily pass through the printer’s nozzles, but not too fluid, or it wouldn’t hold firm after printing. At the same time, the substrate couldn’t be too firm, either, as that would limit the bacteria’s mobility. For example, the researchers showed that if the hydrogel was too stiff, Acetobacter would secrete drastically less nanocellulose.

In the end, the team settled on a consistency similar to hand-cream. They found that this allows the bacteria to go about their business unhindered while keeping ink layers hardy enough to support the bulk of subsequent layers.

RelatedPosts

For the hive: bacteria grow altruistically for the greater good of the colony
Low level of antibiotics cause drug resistance in ‘superbugs’
3-D printed electronic egg could help save vultures
Scientists film bacteria becoming virtually drug-immune — and it took them only 10 days

“The ink must be as viscous as toothpaste and have the consistency of Nivea hand cream,” Schaffner explains.

The researchers believe that their work “has enormous potential”, given the vast diversity of useful bacteria strains. Potential applications include 3D-printed sensors aimed at detecting toxins or pathogens in drinking water. Alternatively, Flink-borne filters could be employed in scrubbing (environmentally disastrous) oil spills. You can see the printer at work below:

“Most people only associate bacteria with diseases, but we actually couldn’t survive without bacteria,” says Patrick Rühs, paper co-author. “However, the researchers believe their new ink is completely safe. The bacteria they use are all harmless and beneficial.”

Still, the research is still in its initial stages. For one, the team hasn’t studied the lifespan of their printed minifactories just yet. However, they “assume” that the bacteria embedded therein can “survive […] for a very long time” as they “require very little in the way of resources”. There are also issues with printing time (which is quite slow) and scalability (which is proving difficult). Currently, the Acetobacter Flink takes several days to produce biomedically-significant quantities of cellulose.

However, the team is convinced that they’ll be able to solve such teething issues, and further optimize and accelerate the processes.

The paper “3D printing of bacteria into functional complex materials” has been published in the journal Science.

Tags: 3d printingbacteriaFlinkLiving Ink

Share13TweetShare
Alexandru Micu

Alexandru Micu

Stunningly charming pun connoisseur, I have been fascinated by the world around me since I first laid eyes on it. Always curious, I'm just having a little fun with some very serious science.

Related Posts

Microbiology

How Much Does a Single Cell Weigh? The Brilliant Physics Trick of Weighing Something Less Than a Trillionth of a Gram

byTibi Puiu
1 day ago
Alien life

This Bizarre Martian Rock Formation Is Our Strongest Evidence Yet for Ancient Life on Mars

byMihai Andrei
5 days ago
Future

This 3D printed circuit board that dissolves in water could finally solve our E-waste problem

byMihai Andrei
2 weeks ago
Health

A Bacterial Protein Could Become the First True Antidote for Carbon Monoxide Poisoning

byTibi Puiu
4 weeks ago

Recent news

New Liquid Uranium Rocket Could Halve Trip to Mars

September 16, 2025

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

September 16, 2025

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

September 16, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.