homehome Home chatchat Notifications


How some fish use polarized light to make themselves invisible to predators

You'd think there's not much a little fish can do to hide from predators in open waters. But when rocks, algae and other marine nooks and crannies are nowhere to be found, fish turn to manipulate the physical interactions of light to balance the scale. For instance, some open ocean fish species employ specialized skin cells that reflect polarized light. This reflection is most effective, not coincidentally, at the 'chase angle' or from the predator's point of view. It's so effective that the US Navy is funding work that might shed light how exactly some fish do this and how this can be applied to make submersibles equally inconspicuous.

Tibi Puiu
November 23, 2015 @ 7:27 am

share Share

You’d think there’s not much a little fish can do to hide from predators in open waters. But when rocks, algae and other marine nooks and crannies are nowhere to be found, fish turn to manipulate the physical interactions of light to balance the scale. For instance, some open ocean fish species employ specialized skin cells that reflect polarized light. This reflection is most effective, not coincidentally, at the ‘chase angle’ or from the predator’s point of view. It’s so effective that the US Navy is funding work that might shed light how exactly some fish do this and how this can be applied to make submersibles equally inconspicuous.

A lookdown fish in the open ocean. Image: Flickr

A lookdown fish in the open ocean. Image: Flickr

Light waves are transverse electromagnetic waves, meaning these travel like waves in a rope. . A light wave that is vibrating in more than one plane is referred to as unpolarized light. Light emitted by the sun, by a lamp in the classroom, or by a candle flame is unpolarized light. Such light waves are created by electric charges that vibrate in a variety of directions, thus creating an electromagnetic wave that vibrates in a variety of directions. It’s helpful to see unpolarized light as a wave that has an average of half its vibrations in a horizontal plane and half of its vibrations in a vertical plane, like the animated diagram shows below.

em wave

Beneath the surface of the water, however, light tends to be polarized. University of Texas at Austin researchers say that many fish species have evolved the ability to detect polarized light. The obvious next step, of course, was to exploit polarized detection and manipulate visibility.

In the open ocean, visibility depends on three main light patterns: brightness contrast, color contrast and polarization contrast. You might have noticed that many fish are silvery, which bounces light off like a mirror. But this camouflage approach works well only if the surrounding water appears uniform. Polarized light is an important component of the underwater light field. So, using mirrors inside such a field might actually backfire. This is why polarized light contrast is considered the most important mean of detection, and why the U.S. Navy has been supporting research like this for many years.

The Navy wants one day for its submersibles to evade detection by manipulating polarized like just like the lookout and a bigeye scad. These fish and three others were studied in the open ocean by the University of Texas at Austin researchers, using a custom-built contraption. The team employed a video polarimeter that can record polarized light in real time, allowing the researchers to essentially see polarized light as fish do. Each fish was confined to a platform that also had a mirror. The platform was rotated for three minutes so that the polarimeter could record from every angle. The process was repeated until 1,500 angle configurations were recorded.

The top panel in black/white shows the intensity and the two other panels resolve different aspects of polarized light scattered off the fish. Credit: FAU Harbor Branch Oceanographic Institute.

The top panel in black/white shows the intensity and the two other panels resolve different aspects of polarized light scattered off the fish. Credit: FAU Harbor Branch Oceanographic Institute.

Results show that fish like the lookdown and the bigeye scad had much better camouflage in polarized light than a mirror had. Moreover, the best camouflage was recorded at the so-called ‘chase angle’, which extends out 45 degrees in all directions from the tail or head. The fish achieves this by employing a specialized structure in their platelets within the skin cells, which scatter polarized light differently depending on the angle.

“Fish have evolved the means to detect polarized light,” said Molly Cummings, professor of integrative biology in the College of Natural Sciences. “Given that, we suggested they’ve probably evolved the means to hide in polarized light. If we can identify that process, then we can improve upon our own camouflage technology for that environment.”

“I think it’s a great example of how human applications can take advantage of evolutionary solutions and the value of evolutionary biology,” said Cummings. “It’s important for people to recognize that we take advantage of evolutionary processes and solutions all the time and that even our military does.”

Simulated view of how the lookdown fish would appear in polarized light with mirrored skin (left) versus skin that reflects polarized light (right). Images are from simulations created by the Cummings lab.

Simulated view of how the lookdown fish would appear in polarized light with mirrored skin (left) versus skin that reflects polarized light (right). Images are from simulations created by the Cummings lab.

share Share

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.

A Brain Implant Just Turned a Woman’s Thoughts Into Speech in Near Real Time

This tech restores speech in real time for people who can’t talk, using only brain signals.

Using screens in bed increases insomnia risk by 59% — but social media isn’t the worst offender

Forget blue light, the real reason screens disrupt sleep may be simpler than experts thought.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.