homehome Home chatchat Notifications


Crabs have evolved five separate times – here's why this is no accident of nature

In different parts of the world evolution often comes up with the same or similar solutions to life’s problems.

Matthew Wills
December 7, 2022 @ 2:29 pm

share Share

Charles Darwin believed evolution created “endless forms most beautiful”. It’s a nice sentiment but it doesn’t explain why evolution keeps making crabs.

Scientists have long wondered whether there are limits to what evolution can do or if Darwin had the right idea. The truth may lie somewhere between the two.

While there doesn’t seem to be a ceiling on the number of species that might evolve, there may be restraints on how many fundamental forms those species can evolve into. The evolution of crab-like creatures may be one of the best examples of this, since they have evolved not just once but at least five times.

Crabs belong to a group of crustaceans called decapods – literally “ten footed”, since they have five pairs of walking legs. Some decapods, like lobsters and shrimp, have a thick, muscular abdomen, which is the bulk of the animal that we eat. With a quick flick of their abdomen lobsters can shoot off backwards and escape predators.

Crabs, by contrast, have a compressed abdomen, tucked away under a flattened but widened thorax and shell. This allows them to scuttle into rock crevices for protection. Evolution repeatedly hit upon this solution because it works well under similar sets of circumstances.

Five groups of “crabs”

King crabs evolved from lobster-like ancestors within the Anomura. By CSIRO, CC BY 3.0CC BY
Redeye sponge crabs carry sponges with them for camouflage. Porco_Rosso/Shutterstock

The largest crab group are the Brachyura (true crabs) including the edible crab and Atlantic blue crab. They had an ancestor that was also crab shaped. Some species have evolved “backwards” and straightened out their abdomens again. The other large group are the Anomura (false crabs), with an ancestor that looked more like a lobster.

Porcelain crabs superficially resemble true crabs. Credit: Flickr.

However, at least four groups of Anomura – sponge crabs, porcelain crabs, king crabs and the Australian hairy stone crab – have independently evolved into a crab-like form in much the same way as the true crabs. Like the true crabs, their compact bodies are more defensive, and can move sideways faster.

This means “crabs” aren’t a real biological group. They are a collection of branches in the decapod tree that evolved to look the same.

Hairy stone crab (Lomis hirta) Tim Binns/WikimediaCC BY-SA

But crabs aren’t the exception.

Something similar happened in the evolution of birds from feathered dinosaurs. Feathers may have first evolved for insulation, to attract mates, for protecting eggs and possibly also as “nets” for catching prey. Millions of years later, feathers elongated and streamlined for flying.

Palaeontologists disagree about the details, but all modern birds (Neoaves) evolved from ground-dwelling ancestors just after the mass extinction that wiped out the other dinosaurs. However, feathered wings and flight also evolved earlier in other groups of dinosaurs, including troodontids and dromaeosaurs. Some of these, like Microraptor, had four wings.

Microraptors had two pairs of wings. CC BY

Re-running the tape of life

Unfortunately, we can’t run evolutionary experiments to see if the same things keep happening because that would take hundreds of millions of years. But the history of life has already done something similar to that for us, when closely related lineages evolve and diversify on different continents. In many cases, these ancestral lines repeatedly came up with the same or almost identical solutions to problems.

One of the best examples is our own group, the mammals.

There are two major groups of living mammals. The placentals (including us) and the marsupials (pouched mammals who give birth to tiny young). Both groups evolved from the same common ancestor over 100 million years ago, the marsupials largely in Australasia and the Americas and the placentals elsewhere.

This isolation led to two almost independent runs of the “experiment” to see what could be done with the mammal body plan. There are marsupial and placental versions of moles, mice, anteaters, gliders, and cats. There was even a marsupial wolf (the thylacine, extinct in 1936), whose skull and teeth match those of the placental wolf in astonishing detail.

Skulls of the marsupial thylacine (left) and placental wolf (right) show striking convergence, despite evolving apart on different continents.

It’s not only body forms that evolve independently, but also organs and other structures. Humans have complex camera eyes with a lens, iris and retina. Squid, and octopuses, which are molluscs and more closely related to snails and clams, also evolved camera eyes with the same components.

Eyes more generally may have evolved independently up to 40 times in different groups of animals. Even box jellyfish, which don’t have a brain, have eyes with lenses at the bases of their four tentacles.

The eyes of the box jellyfish. These invertebrates from near the base of the animal tree of evolution have complex eyes.

The more we look, the more we find. Structures such as jaws, teeth, ears, fins, legs and wings all keep evolving independently across the animal tree of life.

More recently, scientists discovered convergence also happens at the molecular level. The opsin molecules in eyes that convert photons of light into chemical energy and enable humans to see have a tight resemblance to those in box jellyfish, and evolved that way in parallel. Even more bizarrely, animals as different as whales and bats have striking convergence in the genes that enable them to echolocate.

Are humans really unique?

Many of the things we like to think make humans special have been reinvented by evolution elsewhere. Corvids like crows and ravens have problem-solving intelligence and, along with owls, can use simple tools.

Whales and dolphins have complex social structures, and their big brains allowed them to develop language. Dolphins use tools like sponges to cover their noses while they forage across stony sea bottoms. Octopuses also use tools and learn from watching what happens to other octopuses.

Octopus marginatus hiding between two shells from East Timor. Nick Hobgood, CC BY

If things keep evolving in similar ways here on Earth, there’s a possibility they might also follow a related course if life has evolved elsewhere in the universe. It might mean extra-terrestrial beings look less alien and more familiar than we expect.

Matthew Wills, Professor of Evolutionary Palaeobiology at the Milner Centre for Evolution, University of Bath

This article is republished from The Conversation under a Creative Commons license. Read the original article.

share Share

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

These "Ants" Use Ultrablack to Warn Predators — and Stay Cool

Velvet ants, actually flightless wasps, boast an ultrablack exoskeleton thanks to dense nanostructures.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

This Hornet Can Drink 80% Alcohol Without Ever Getting Drunk and Scientists Finally Know Why

Oriental hornets never get intoxicated with alcohol no matter how strong the alcohol or how long they drink.

This Tiny Microbe Can Withstand Extreme Radiation That Would Obliterate Humans. Here's How It Might Protect Astronauts on a Trip to Mars

Could a humble bacterium hold the key to surviving cosmic radiation?

The heart may have its own "mini-brain": a nervous system that controls heartbeat

Somewhere within the heart, there may be a "little brain".

Crocodile Scales Form in a Surprising Way That Has Nothing to Do with Genetics

The surprising way crocodile scales form offers a glimpse into how evolution works beyond genes.

Trained Dogs Can Sniff Out Canine Bladder Cancer with Impressive Accuracy

Dogs have been successfully trained to detect one of the most common dog cancers with 92% specificity.

9,000-year-old non-stick trays was used to make Neolithic focaccia

Husking trays not only baked bread but also fostered human connection across an area spanning 2,000 km (~1,243 miles)