homehome Home chatchat Notifications


How cockroaches make democratic group decisions

For cockroaches, it seems, collaboration comes naturally: when 50 cockroaches are presented with 3 shelters which can only host 40 (each), they’ll split into two groups, leaving the third shelter empty. Basically, they find a way to split themselves equally, in a democratic fashion. In cockroach groups, there are no members higher than others – […]

livia rusu
July 3, 2014 @ 6:13 am

share Share

For cockroaches, it seems, collaboration comes naturally: when 50 cockroaches are presented with 3 shelters which can only host 40 (each), they’ll split into two groups, leaving the third shelter empty. Basically, they find a way to split themselves equally, in a democratic fashion.

In cockroach groups, there are no members higher than others – everybody is equal, apparently. Thus, group decision making is simplified, leading to patterns which can be understood and studied. What makes it even more interesting is that cockroaches don’t make sounds, so they must therefore communicate without vocalizing.

“Cockroaches use chemical and tactile communication with each other,” says Dr José Halloy, who co-authored the research in the current Proceedings of the National Academy of Sciences. “They can also use vision,” says Halloy, a scientist in the Department of Social Ecology at the Free University of Brussels in Belgium. “When they encounter each other they recognise if they belong to the same colony thanks to their antennae that are ‘nooses’, that is, sophisticated olfactory organs that are very sensitive,” he says.

Halloy wanted to see how the cockroaches would behave when faced with a decision. He placed the insects in a dish that contained three shelters. Initially, the shelters could only host 40 insects each, so the 50 bugs decided to split equally – 25 into one, 25 into the other, leaving the third one empty. However, when the shelters were larger than 50, they all moved into just one shelter, showing that they make rational, democratic group decisions.

“Cockroaches are gregarious insects [that] benefit from living in groups. It increases their reproductive opportunities, [promotes] sharing of resources like shelter or food, prevents desiccation by aggregating more in dry environments, etc,” he says.”So what we show is that these behavioural models allow them to optimise group size.”

The way they behave is so basic and rational, that it can be quite predictable to model. Researchers hope to draw insights for other insects as well – and not only insects.

“It looks both at the mechanisms underlying decision-making by animals and how those mechanisms produce a distribution of animals amongst resource sites that optimizes their individual fitness,” says Dr David Sumpter, a University of Oxford zoologist.”Much previous research has concentrated on either mechanisms or optimality at the expense of the other.”

The study documenting this behavior was published in PNAS in 2006.

share Share

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

These "Ants" Use Ultrablack to Warn Predators — and Stay Cool

Velvet ants, actually flightless wasps, boast an ultrablack exoskeleton thanks to dense nanostructures.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

This Hornet Can Drink 80% Alcohol Without Ever Getting Drunk and Scientists Finally Know Why

Oriental hornets never get intoxicated with alcohol no matter how strong the alcohol or how long they drink.

This Tiny Microbe Can Withstand Extreme Radiation That Would Obliterate Humans. Here's How It Might Protect Astronauts on a Trip to Mars

Could a humble bacterium hold the key to surviving cosmic radiation?

The heart may have its own "mini-brain": a nervous system that controls heartbeat

Somewhere within the heart, there may be a "little brain".

Crocodile Scales Form in a Surprising Way That Has Nothing to Do with Genetics

The surprising way crocodile scales form offers a glimpse into how evolution works beyond genes.

Trained Dogs Can Sniff Out Canine Bladder Cancer with Impressive Accuracy

Dogs have been successfully trained to detect one of the most common dog cancers with 92% specificity.

9,000-year-old non-stick trays was used to make Neolithic focaccia

Husking trays not only baked bread but also fostered human connection across an area spanning 2,000 km (~1,243 miles)