homehome Home chatchat Notifications


Claws of meanest crustacean inspire supermaterial design

As the night covers the tropics, odd clicky sounds run about much to the annoyance of sailors stationed in harbors. These sounds are made by the punching mantis shrimp, a very small crustacean which doesn’t seem that much threatening but who definitely lives up to its name. Its claws are so powerful that it can […]

Tibi Puiu
April 24, 2014 @ 8:00 am

share Share

The punching mantis shrimp is one of the meanest sea dweller. Photo: Carlos Puma

The punching mantis shrimp is one of the meanest sea dweller. Photo: Carlos Puma

As the night covers the tropics, odd clicky sounds run about much to the annoyance of sailors stationed in harbors. These sounds are made by the punching mantis shrimp, a very small crustacean which doesn’t seem that much threatening but who definitely lives up to its name. Its claws are so powerful that it can clamp with a force up to 1,000 times its own weight, shattering unsuspecting prey, other punching mantises and just about anyone or anything that gets in its way. This is a bad shrimp, no doubt, yet the things scientists can learn from it are nothing short of amazing. A team found, for instance, that they could design an ultra strong composite material based on how the punching mantis shrimp’s claw are made, with potential applications in aerospace, auto industry or defense.

You don’t want this shrimp on your dinner table

At 4 to 6 in (10 to 15 cm) long, you might not give a second thought to the punching mantis shrimp, but it really is a sucker puncher. First thing you notice is its club-like claws, but what’s amazing is how hard it can close them. Close observations show that its claws cock back like a pistol hammer and as it snaps closed, it accelerates faster than a .22-caliber bullet, generating a force more than 1,000 times the shrimp’s own weight. So if it pinched your finger, imagine something like 200 lb (91 kg) instantly pressing over it. If you’re a punching mantis shrimp enthusiast, then you know how hard these fellas are hard to keep since they regularly break aquariums and owners need to keep them in special tanks.

At this kind of acceleration, the energy released by the shrimp’s claws is enormous – enough to literally boil water at a temperature of 4,000⁰ C (7,200 ⁰ F). Also, the released energy triggers a shock wave that it stuns or kills small prey at a distance. By now, I take it, you’re convinced the punching mantis shrimp is one bad mother. A natural question arises, however: how can this tiny animal withstand these enormous energies in its claws?

Electron microscope imaging shows the mantis shrimp's cuticles are aligned in a spiral fashion. Photo: University of California

Electron microscope imaging shows the mantis shrimp’s cuticles are aligned in a spiral fashion. Photo: University of California

The same question puzzled a team of researchers at University of California who saw this an opportunity to maybe devise a new material based on how the shrimp’s claws are grown. Carefully studying it, researchers found the claw’s covering, called the cuticle, is made up of several layers, the innermost of which is the endocuticle. Remarkably, these sections are comprised of tiny mineralized fibers aligned in a spiral fashion, as each layer is offset by a small angle from the next.

Using  carbon fiber-epoxy composites, the researchers designed a spiral of their own with fibers set at three different angles ranging from 10 to 25 degrees to the previous layer. They then built two control structures made from the same material: one in a simple one-way spiral and the other with each layer placed at a quarter turn to the previous one.

Shock, tension and compression tests showed that control materials behaved badly, with the one way spiral failing completing and the other becoming severely punctured or damaged. The material designed based on the punching mantis shrimp, however, only took up 20% of the damage as that of the quarter turn version. The shrimp’s spiral design allows for a  more even dispersion of energy, keeping shock from concentration in a single spot, thus avoiding structural failure.

The findings, published in the journal Acta Biomaterialia, suggest that a multitude of everyday applications could be improved with materials designed like the shrimp’s claws, from aerospace, to automobiles, to body armor. It remains to be seen how easy manufacturing can be integrated to make such compounds cheap enough for mass production. Yet again, however, studies such as this show that scientists need not look too far inspiration to solve the challenges they’re met with. Imitation can be an art.

 

 

share Share

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.

These "Ants" Use Ultrablack to Warn Predators — and Stay Cool

Velvet ants, actually flightless wasps, boast an ultrablack exoskeleton thanks to dense nanostructures.

These Squirrels Are Hunting and Eating Meat. Scientists Are Stunned — And They Have Video Proof

California ground squirrels surprise scientists with their newly discovered taste for mammalian flesh.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

This Hornet Can Drink 80% Alcohol Without Ever Getting Drunk and Scientists Finally Know Why

Oriental hornets never get intoxicated with alcohol no matter how strong the alcohol or how long they drink.

This Tiny Microbe Can Withstand Extreme Radiation That Would Obliterate Humans. Here's How It Might Protect Astronauts on a Trip to Mars

Could a humble bacterium hold the key to surviving cosmic radiation?

The heart may have its own "mini-brain": a nervous system that controls heartbeat

Somewhere within the heart, there may be a "little brain".

Crocodile Scales Form in a Surprising Way That Has Nothing to Do with Genetics

The surprising way crocodile scales form offers a glimpse into how evolution works beyond genes.