homehome Home chatchat Notifications


Using firefly enzyme, researchers make brain cells glow in the dark

Just in time for Christmas too.

Mihai Andrei
October 28, 2016 @ 6:24 pm

share Share

Vanderbilt researchers have developed a new sensor which makes brain cells light up like fireflies.

Individual neuron glowing with bioluminescent light produced by a new genetically engineered sensor.
Credit: Johnson Lab / Vanderbilt University

The probe relies on a modified version of luciferase, the class of oxidative enzymes that produce bioluminescence (not to be confused with photoproteins). In nature, several types of organisms use luciferase to regulate their light emission, the most famous being fireflies. Several types of mushrooms and marine creatures also use the same enzyme, though, lighting up through luminescence, not fluorescence.

With this in mind, researchers wanted to see if they can also use it to make brain cells light up, which would have a number of potential medical applications. It’s not the first time something like this has been attempted, but usually, these efforts rely on fluorescence which has some drawbacks.

“For a long time neuroscientists relied on electrical techniques for recording the activity of neurons. These are very good at monitoring individual neurons but are limited to small numbers of neurons. The new wave is to use optical techniques to record the activity of hundreds of neurons at the same time,” said Carl Johnson, Stevenson Professor of Biological Sciences, who headed the effort.

“Most of the efforts in optical recording use fluorescence, but this requires a strong external light source which can cause the tissue to heat up and can interfere with some biological processes, particularly those that are light sensitive,” he said.

To put it simply, fluorescence requires light to function and it interacts with this light, causing unwanted interference. Luminescence, on the other hand, works completely in the dark. Johnson and his collaborators — Associate Professor Donna Webb, Research Assistant Professor Shuqun Shi, post-doctoral student Jie Yang, biological sciences doctoral student Derrick Cumberbatch, Professor Danny Winder, and molecular physiology and biophysics postdoctoral student Samuel Centanni — genetically modified a type of luciferase to light up when exposed to calcium ions. To insert this into the brain cells, they used a creative method, piggybacking on a virus that attaches to the neurons. Calcium was used here because calcium levels spike when neurons receive signals, so it’s a substance tied to natural neural activity.

They’ve successfully tested the method and showed it works, but it’s still a crude version. In future research, scientists want to determine the exact sensitivity of the method and see how they can finesse the delivery.

“We’ve shown that the approach works,” Johnson said. “Now we have to determine how sensitive it is. We have some indications that it is sensitive enough to detect the firing of individual neurons, but we have to run more tests to determine if it actually has this capability.”

Journal Reference: Jie Yang, Derrick Cumberbatch, Samuel Centanni, Shu-qun Shi, Danny Winder, Donna Webb, Carl Hirschie Johnson. Coupling optogenetic stimulation with NanoLuc-based luminescence (BRET) Ca sensing. Nature Communications, 2016; 7: 13268 DOI: 10.1038/ncomms13268

share Share

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.

Worms and Dogs Thrive in Chernobyl’s Radioactive Zone — and Scientists are Intrigued

In the Chernobyl Exclusion Zone, worms show no genetic damage despite living in highly radioactive soil, and free-ranging dogs persist despite contamination.