homehome Home chatchat Notifications


Artificial cell can move on its own

In an attempt to further out understanding of cell deformation and mechanics, researchers at the Technische Universität München (TUM) have built an artificial cellular model that can change its shape and move on its own. Cells are complex biological objects that exhibit sophisticated metabolic functions. Primordial cells, however, were much simpler in design: just a […]

Tibi Puiu
September 8, 2014 @ 8:15 am

share Share

This isn't a child-like animation, but real, genuine footage of an artificial cell moving under a microscope. Image: gif created for video produced by TUM.

This isn’t a child-like animation, but real, genuine footage of an artificial cell moving under a microscope. Image: gif created for video produced by TUM.

In an attempt to further out understanding of cell deformation and mechanics, researchers at the Technische Universität München (TUM) have built an artificial cellular model that can change its shape and move on its own.

Cells are complex biological objects that exhibit sophisticated metabolic functions. Primordial cells, however, were much simpler in design: just a membrane and a couple of molecules. Mimicking this simple, minimalist design, German researchers built a cell-like model with a biomechanical function that allows it to move and change its shape without external influence.

Credit: TUM

Credit: TUM

The model is made of a membrane shell, two different kinds of biomolecules and, of course, a fuel. The envelope, which in a biological cell corresponds to the vesicle, is made of a double-layered lipid membrane, just like in a natural cell. The membrane was filled with microtubules, like those made by cellular cytoskeletons and kinesins. These tiny proteins act like motors and move objects along the cytoskeletons of real cells. During experiments, these motors constantly push tubules alongside each other sparking movement. The kinetic energy is fueled by adenosine triphosphate (ATP).

credit: TUM

credit: TUM

From a physical perspective, the microtubules form a two-dimensional liquid crystal under the membrane, which is in a permanent state of motion.

“One can picture the liquid crystal layer as tree logs drifting on the surface of a lake,” explains Felix Keber, lead author of the study. “When it becomes too congested, they line up in parallel but can still drift alongside each other.”

“With our synthetic biomolecular model we have created a novel option for developing minimal cell models,” explains TUM-Prof. Andreas Bausch. “It is ideally suited to increasing the complexity in a modular fashion in order to reconstruct cellular processes like cell migration or cell division in a controlled manner. That the artificially created system can be comprehensively described from a physical perspective gives us hope that in the next steps we will also be able to uncover the basic principles behind the manifold cell deformations.”

Findings appeared in the journal Science.

share Share

Researchers Turn 'Moon Dust' Into Solar Panels That Could Power Future Space Cities

"Moonglass" could one day keep the lights on.

Ford Pinto used to be the classic example of a dangerous car. The Cybertruck is worse

Is the Cybertruck bound to be worse than the infamous Pinto?

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.