ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Science → Biology

Artificial cell can move on its own

Tibi PuiubyTibi Puiu
September 8, 2014
in Biology, News
A A
Share on FacebookShare on TwitterSubmit to Reddit

RelatedPosts

Researchers found intact, 2,000-year-old brain cells turned to glass after the eruption of Mount Vesuvius
Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”
Researchers find out how cells heat themselves
Novel cell-in-a-shell is a like a body armor for tiny living things
This isn't a child-like animation, but real, genuine footage of an artificial cell moving under a microscope. Image: gif created for video produced by TUM.
This isn’t a child-like animation, but real, genuine footage of an artificial cell moving under a microscope. Image: gif created for video produced by TUM.

In an attempt to further out understanding of cell deformation and mechanics, researchers at the Technische Universität München (TUM) have built an artificial cellular model that can change its shape and move on its own.

Cells are complex biological objects that exhibit sophisticated metabolic functions. Primordial cells, however, were much simpler in design: just a membrane and a couple of molecules. Mimicking this simple, minimalist design, German researchers built a cell-like model with a biomechanical function that allows it to move and change its shape without external influence.

Credit: TUM
Credit: TUM

The model is made of a membrane shell, two different kinds of biomolecules and, of course, a fuel. The envelope, which in a biological cell corresponds to the vesicle, is made of a double-layered lipid membrane, just like in a natural cell. The membrane was filled with microtubules, like those made by cellular cytoskeletons and kinesins. These tiny proteins act like motors and move objects along the cytoskeletons of real cells. During experiments, these motors constantly push tubules alongside each other sparking movement. The kinetic energy is fueled by adenosine triphosphate (ATP).

credit: TUM
credit: TUM

From a physical perspective, the microtubules form a two-dimensional liquid crystal under the membrane, which is in a permanent state of motion.

“One can picture the liquid crystal layer as tree logs drifting on the surface of a lake,” explains Felix Keber, lead author of the study. “When it becomes too congested, they line up in parallel but can still drift alongside each other.”

“With our synthetic biomolecular model we have created a novel option for developing minimal cell models,” explains TUM-Prof. Andreas Bausch. “It is ideally suited to increasing the complexity in a modular fashion in order to reconstruct cellular processes like cell migration or cell division in a controlled manner. That the artificially created system can be comprehensively described from a physical perspective gives us hope that in the next steps we will also be able to uncover the basic principles behind the manifold cell deformations.”

Findings appeared in the journal Science.

Tags: artificial cellcellsynthetic biology

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Biology

Scientists put nanotattoos on frozen tardigrades and that could be a big deal

byMihai Andrei
2 months ago
Biology

Your Cells Can Hear You — And It Could Be Important for Fat Cells

byAlexandra Gerea
2 months ago
Biology

Yeast in Space? Scientists Just Launched a Tiny Lab to See If We Can Create Food in Orbit

byMihai Andrei
2 months ago
Biology

This Tokyo Lab Built a Machine That Grows Real Chicken Meat

byMihai Andrei
2 months ago

Recent news

Scientists Just Proved Ancient Humans Were in North America 10,000 Years Earlier Than We Thought

June 30, 2025

What’s Seasonal Body Image Dissatisfaction and How Not to Fall into Its Trap

June 28, 2025

Why a 20-Minute Nap Could Be Key to Unlocking ‘Eureka!’ Moments Like Salvador Dalí

June 28, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.