homehome Home chatchat Notifications


Dwarf planet Ceres is an ocean world with liquid water beneath the surface

Our solar system is getting more interesting with each passing year

Mihai Andrei
August 11, 2020 @ 4:39 pm

share Share

Astronomers have called Ceres many things: the largest object in the asteroid belt; a dwarf planet; a cold, barren rock. But ‘ocean world’ is not something they would have even considered — until very recently.

This animation shows dwarf planet Ceres as seen by NASA’s Dawn. The map overlaid at right gives scientists hints about Ceres’ internal structure from gravity measurements. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Ceres lies within the asteroid belt between Mars and Jupiter. First considered to be a planet in the 19th century, it is now known to be an asteroid, and classed as a dwarf planet, like Pluto.

Now, a flurry of studies forces us to rethink Ceres once again, as astronomers report evidence indicative of a salty ocean beneath its surface.

We can now say that Ceres is a sort of ocean world, as are some of Saturn’s and Jupiter’s moons,” Maria Cristina De Sanctis, from Rome’s Istituto Nazionale di Astrofisica and one of the study authors, told AFP.

De Sanctis and colleagues analyzed images sent from NASA’s robotic Dawn spacecraft, which entered orbit around Ceres in 2015. As Dawn approached Ceres, it offered an unprecedented glimpse into the planetoid, showing impact craters and signs of cryovolcanic activity (volcanism that erupts frozen water, ammonia, or methane, instead of molten rock). Now, researchers also analyzed infrared images, which showed the presence of a rock called hydrohalite.

A fracture system inside the rim of the Occator Crater, where the new studies found evidence of water. Image credits: NASA.

As the name implies (hydro=water, halite=rock salt), hydrohalite is a mineral that forms in salty waters and has until now only been observed on Earth. The deposit seems to have built up during the last two million years, which is extremely recent in geologic history, suggesting that the processes behind it are still very much active. In other words, it seems that brine is still ascending from the planet’s interior, a “smoking gun” for liquid water.

“That material is unstable on Ceres’ surface, and hence must have been emplaced very recently,” said co-authors Julie Castillo-Rogez, from the California Institute of Technology’s Jet Propulsion Laboratory.

Another published paper found evidence of cryovolcanism that started around 9 million years ago and lasted for several million years, also indicative of a deep brine source. Gravity data and thermal modeling also imply an extensive deep brine reservoir beneath the Ceresian surface.

A crater on Ceres in enhanced color. Image credits: NASA.

In a separate paper, researchers used remote sensing to analyze the crust of Ceres, finding evidence of density and rheological variations, which are also consistent with a liquid ocean under the surface. Whether or not this is still an active ocean or just a remnant of one is unclear.

This finding could have massive implication for the field of astrobiology. Not only does Ceres (a seemingly dull object in the asteroid belt) feature liquid water beneath its surface, shielded from radiation — but it also features salt.

According to De Sanctis, the ingredients of life seem to be lining up nicely on Ceres.

“The material found on Ceres is extremely important in terms of astrobiology,” she said.

“We know that these minerals are all essential for the emergence of life.”

Journal References:

  • C. A. Raymond et al. Impact-driven mobilization of deep crustal brines on dwarf planet Ceres, Nature Astronomy (2020). DOI: 10.1038/s41550-020-1168-2
  • A. Nathues et al. Recent cryovolcanic activity at Occator crater on Ceres, Nature Astronomy (2020). DOI: 10.1038/s41550-020-1146-8
  • R. S. Park et al. Evidence of non-uniform crust of Ceres from Dawn’s high-resolution gravity data, Nature Astronomy (2020). DOI: 10.1038/s41550-020-1019-1
  • M. C. De Sanctis et al. Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids, Nature Astronomy (2020). DOI: 10.1038/s41550-020-1138-8
  • B. E. Schmidt et al. Post-impact cryo-hydrologic formation of small mounds and hills in Ceres’s Occator crater, Nature Geoscience (2020). DOI: 10.1038/s41561-020-0581-6

share Share

A Simple Heat Hack Could Revolutionize How We Produce Yogurt

In principle, the method could be deployed tomorrow, researchers say.

Scientists Create a ‘Smart Sponge’ That Knows When to Heal and When to Fight Inflammation

This hydrogel could help millions of people lead a better life.

The Race to the Bottom: Japan Is Set to Start Testing Deep-Sea Mining

There's a big hidden cost to this practice.

Japan Just Smashed the Internet Speed World Record and It's Much Faster Than You Think

Researchers transmitted 127,500 GB every second — over the distance from Chicago to Dallas.

Can You Tell Which Knot Is Strongest? Most People Fail This Surprisingly Tough Challenge

Knots are a test of physical intuition and most of us are failing hard.

Scientists Call for a Global Pause on Creating “Mirror Life” Before It’s Too Late: “The threat we’re talking about is unprecedented”

Creating synthetic lifeforms is almost here, and the consequences could be devastating.

For the First Time Ever We Can See Planets Starting to Form Around a Star

JWST and ALMA peered through a natural opening in the star’s surrounding cloud to catch the action up close.

There might be an anti-aging secret hiding in magic mushrooms

Psilocybin extends cell life, and preserves aging DNA structures.

Not Just Hunters: Wooden Tools Unearth the Sophisticated, Plant-Eating World of Early Humans

What if the Stone Age wasn't really about stone?

This is How Exercise Supercharges the Immune System Against Cancer

Exercise reshapes gut bacteria to supercharge immune response against tumors.