homehome Home chatchat Notifications


Astronomers find two failed stars wandering the universe together

Astronomers have discovered an exotic binary system consisting of two brown dwarfs orbiting each other.

Rob Lea
December 17, 2020 @ 1:36 pm

share Share

A team of researchers from the University of Bern has discovered a very different binary system 450 light-years from Earth. The system — CFHTWIR-Oph 98 or Oph 98 for short — has twin occupants that appeared at first sight to be exoplanets existing in a star-less system. A deeper examination has revealed that they are brown dwarfs — Oph 98 A and Oph 98 B respectively — astronomical objects that are similar to stars but smaller and cooler.

This artist’s illustration represents a couple of planetary-mass brown dwarfs Ophiuchus 98. As they are very young, they are still evolving in the molecular clouds that saw their birth. (University of Bern, Illustration: Thibaut Roger)

These brown dwarfs wander the galaxy together, orbiting each other at an incredibly large distance equivalent to 200 times the distance between Earth and the Sun.

The discovery of the curious Oph 98 system by the research team led by Clémence Fontanive from the Center for Space and Habitability (CSH) and National Centre of Competence in Research PlanetS (NCCR PlanetS) is documented in a paper published in The Astrophysical Journal Letters.

A Star that Failed

The Oph 98 is a relativity new-born system in astrophysical terms, forming just 3 million years ago in the Ophiuchus stellar nursery (hence the ‘Oph’ element of its name). Its relative youth has some interesting consequences for the bodies that comprise it and led the team to properly identify its constituent bodies. 

The system has not existed for long enough for it to start forming planets. This means that Oph 98 A and B must have both formed via the same mechanisms that give rise to stars. This conclusion is also supported by the fact that Oph 98 B is roughly the right size to be a planet, but Oph A is too small to have the reservoir of material needed to form a planet so large. That means they must be brown dwarfs.

“This tells us that Oph 98 B, like its host, must have formed through the same mechanisms that produce stars and shows that the processes that create binary stars operate on scaled-down versions all the way down to these planetary masses,” says Fontanive.

In terms of mass brown dwarfs exist between planets and stars (NASA/ Caltech/ R. Hurt (IPAC).)

The fact that brown dwarfs form in ways that are similar to stars and share similar masses, but do not ignite with the nuclear processes that power stars, has often led to them being nicknamed ‘failed stars.’ It is extremely rare for star-forming processes to create worlds that go on to exist in a system such as this. 

The objects are rare examples of astronomical bodies similar to giant exoplanets that orbit each other without a parent star. Both are young brown dwarfs, with Oph 98 A being the larger of the two with a mass 15 times that of Jupiter. Its smaller companion — Oph 98 B — has a mass equivalent to 8 times that of the gas giant, which is the largest body other than the Sun in our solar system.

This isn’t the only thing that makes Oph 98 unique, however. 

Brown Dwarfs with a Weak Bond

Another thing that makes the Oph 98 system so remarkable is the fact that, like all binary systems, the bodies are gravitationally bound. These bonds are greater with objects of greater mass but follow an inverse square law — meaning the bond’s strength falls off quickly as separation distances increase. Because these objects have relatively small mass coupled with an extremely large separation, the gravitational bond between them is one of the weakest in terms of energy that astronomers have ever observed. 

Observing this system at all is no mean feat as brown dwarfs — especially low-mass ones — emit very little electromagnetic radiation and are thus, not easy to spot.

“Low-mass brown dwarfs are very cold and emit very little light, only through infrared thermal radiation,” explains Fontanive. “This heat glow is extremely faint and red, and brown dwarfs are hence only visible in infrared light.” 

The Ophiuchus cluster that is home to Oph 98 sits in a cloud of dust that makes it difficult to see. In this image it is pictured in X-rays by the Chandra X-Ray Observatory (Chandra X-Ray Observatory)

This visibility challenge was further compounded by the fact that Oph 98 and the Ophiuchus galaxy cluster itself is embedded in a dense cloud of dust that scatters visible light. “Infrared observations are the only way to see through this dust,” the researcher adds.

In fact, the team’s discovery was only made possible by the impressive power of the Hubble Space Telescope and the fact that it makes its observations from above Earth.

Hubble Shines Through Again

The Hubble Space Telescope is one of the only telescopes capable of observing objects as faint as the Oph 98 A and B and resolving the image of the brown dwarfs at such tight angles.

“Detecting a system like Oph 98 also requires a camera with a very high resolution, as the angle separating Oph 98 A and B is a thousand times smaller than the size of the moon in the sky,” Fontanive continues. 

The Hubble Space telescope’s vantage point above Earth’s atmosphere allows it to spot water vapor from brown dwarfs (ESA)

Hubble’s space-based vantage point is also crucial for the observation of such objects. This is because the infrared signatures that are used to observe brown dwarfs arise from water vapors that form in their upper atmospheres. As Earth’s atmosphere is full of water also producing this signal, the fainter trace from distant brown dwarfs is almost always obscured beyond detection for telescopes at the planet’s surface. 

“Both objects looked very red and showed clear signs of water molecules. This immediately confirmed that the faint source we saw next to Oph 98 A was very likely to also be a cold brown dwarf, rather than a random star that happened to be aligned with the brown dwarf in the sky,” says Fontanive.

The team also found Oph 98 in data collected by the CFHT (pictured) 14 years ago. (CFHT)

Interestingly, the team’s findings have helped confirm the fact that the Oph 98 system has actually been spotted before. The binary was also visible in data collected by the Canada-France-Hawaii Telescope (CFHT), located atop the summit of Mauna Kea, Hawaii, 14 years ago. This older data helped the team confirm how Oph 98 A and B move together across the galaxy as a pair.

“We observed the system again this summer from another Hawaiian observatory, the United Kingdom Infra-Red Telescope. Using these data, we were able to confirm that Oph 98 A and B are moving together across the sky over time, relative to other stars located behind them, which is evidence that they are bound to each other in a binary pair”, explains Fontanive. “We are really witnessing an incredibly rare output of stellar formation processes.”

Original Research

Fontanive. C., et al, ‘A wide planetary-mass companion to a young low-mass brown dwarf in Ophiuchus,’ The Astrophysical Journal Letters, [2020], [https://arxiv.org/abs/2011.08871]

share Share

Researchers Turn 'Moon Dust' Into Solar Panels That Could Power Future Space Cities

"Moonglass" could one day keep the lights on.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Evolution just keeps creating the same deep-ocean mutation

Creatures at the bottom of the ocean evolve the same mutation — and carry the scars of human pollution

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.