homehome Home chatchat Notifications


Astronomers discover exoplanet spiraling toward its demise

Measuring the orbital decay of exoplanets has proven difficult due to the slow and gradual nature of the process.

Jordan Strickler
December 20, 2022 @ 7:25 pm

share Share

Kepler-1658b was the first planet outside our Solar System discovered by the Kepler telescope (Credit: Gabriel Perez Diaz/Instituto de Astrofisica de Canarias)

Kepler-1658b isn’t going to be having a great time in about three million years or so. The distant exoplanet is set to vanish into oblivion as it spirals closer and closer to its expanding star in a decaying orbit. Soon (on a cosmic timeline, anyway), the planet will collide with the star, marking its demise.

This is the first look at a system at this late stage of evolution, which gives us new information about the long, complicated process of planetary orbital decay. Rather ironically, Kepler-1658b is the first exoplanet discovered by the Kepler Space Telescope, launched in 2009.

“We’ve previously detected evidence for exoplanets inspiraling toward their stars, but we have never before seen such a planet around an evolved star,” says Shreyas Vissapragada, a 51 Pegasi b Fellow at the Center for Astrophysics | Harvard & Smithsonian and lead author of the study, published in The Astrophysical Journal Letters. “Theory predicts that evolved stars are very effective at sapping energy from their planets’ orbits, and now we can test those theories with observations.”

Kepler-1658b is a “hot Jupiter,” a term used to describe exoplanets with the same mass and size as Jupiter but are in scorchingly close orbits around their host stars. For Kepler-1658b, that distance is merely an eighth of the space between our Sun and its tightest orbiting planet, Mercury. Orbital decay appears inevitable for hot Jupiters and other planets like Kepler-1658b that are already very close to their stars. As it stands now, Kepler-1658b is 5.88 times Jupiter’s mass and takes 3.8 days to orbit its star.

Measuring the orbital decay of exoplanets has proven difficult due to the slow and gradual nature of the process. According to the new study, Kepler-1658b’s orbital period is decreasing at a microscopic rate of about 131 milliseconds per year, with a shorter orbit indicating the planet has moved closer to its star.

Detecting this decline required multiple years of careful observation. First, the Kepler telescope started the watch, which was then picked up by the Palomar Observatory’s Hale Telescope in Southern California, and finally by the Transiting Exoplanet Survey Telescope (TESS), which launched in 2018. All three instruments captured transits — when an exoplanet crosses the face of its star and causes a very slight dimming of the star’s brightness.

While planet-star collisions are certainly the fate of billions of stars, Kepler-1658b’s root cause is its tides. Tides are generated by gravitational interactions between two orbiting bodies, such as between our world and the Moon or Kepler-1658b and its star. The bodies’ gravities distort each other’s shapes, and as the bodies respond to these changes, energy is released.

“Now that we have evidence of inspiraling of a planet around an evolved star, we can really start to refine our models of tidal physics,” Vissapragada says. “The Kepler-1658 system can serve as a celestial laboratory in this way for years to come, and with any luck, there will soon be many more of these labs.”

share Share

New Liquid Uranium Rocket Could Halve Trip to Mars

Liquid uranium rockets could make the Red Planet a six-month commute.

Scientists think they found evidence of a hidden planet beyond Neptune and they are calling it Planet Y

A planet more massive than Mercury could be lurking beyond the orbit of Pluto.

People Who Keep Score in Relationships Are More Likely to End Up Unhappy

A 13-year study shows that keeping score in love quietly chips away at happiness.

NASA invented wheels that never get punctured — and you can now buy them

Would you use this type of tire?

Does My Red Look Like Your Red? The Age-Old Question Just Got A Scientific Answer and It Changes How We Think About Color

Scientists found that our brains process colors in surprisingly similar ways.

Why Blue Eyes Aren’t Really Blue: The Surprising Reason Blue Eyes Are Actually an Optical Illusion

What if the piercing blue of someone’s eyes isn’t color at all, but a trick of light?

Meet the Bumpy Snailfish: An Adorable, Newly Discovered Deep Sea Species That Looks Like It Is Smiling

Bumpy, dark, and sleek—three newly described snailfish species reveal a world still unknown.

Scientists Just Found Arctic Algae That Can Move in Ice at –15°C

The algae at the bottom of the world are alive, mobile, and rewriting biology’s rulebook.

A 2,300-Year-Old Helmet from the Punic Wars Pulled From the Sea Tells the Story of the Battle That Made Rome an Empire

An underwater discovery sheds light on the bloody end of the First Punic War.

Scientists Hacked the Glue Gun Design to Print Bone Scaffolds Directly into Broken Legs (And It Works)

Researchers designed a printer to extrude special bone grafts directly into fractures during surgery.