homehome Home chatchat Notifications


Martian outposts could be made with astronaut's blood, sweat, and pee -- quite literally

Their blood, tears, and sweat contain useful chemicals for developing construction materials.

Alexandru Micu
September 14, 2021 @ 3:47 pm

share Share

Building the future’s space colony will take grit, blood, sweat, and tears — quite literally so, according to new research.

Image credits Tatiana Belova.

Researchers at the University of Manchester plan to build astronauts’ future space lodgings out of the astronauts themselves. More to the point, they plan to use the albumin protein naturally present in their blood, alongside urea, a waste product naturally excreted through urine and sweat. These compounds can be mixed with martian soil — regolith — to create building materials that are comparable to, and even out-perform, concrete.

With the sweat of our brows

“Scientists have been trying to develop viable technologies to produce concrete-like materials on the surface of Mars, but we never stopped to think that the answer might be inside us all along,” says Dr. Aled Roberts from The University of Manchester, a co-author of the paper describing the process.

Size and mass are important limitations for any transportation effort, but none much more so than space transportation. Every cubic inch of volume and every gram of weight in a spaceship are carefully planned and accounted for. Nothing is wasted, and nothing that isn’t essential is included — simply because taking something to space takes a fortune in fuel, design, and logistical costs.

This means that it’s simply not economically viable to take a load of concrete or bricks up to Mars or the Moon, for example. Naturally, this is an issue, as we want to have people living on these (and many other) worlds in the future. In a bid to try and solve this issue, the team at Machester worked to develop a way to make local resources usable by the astronauts as building materials.

Maritan regolith has been investigated for this purpose in the past, especially in conjunction with any local water resources. Together, these can produce a mixture that, while not ideal, is appropriate for lightweight construction duties, enough to give missions their first staging base that’s viable for long-term habitation.

The team realized that one resource will never be missing from crewed missions: the crew. The material they developed, AstroCrete, uses the protein albumin isolated from human blood plasma as a binder for lunar or Martian dust. The finished product can withstand compressive strengths as high as 25 MPa (Megapascals). For comparison’s sake, ordinary concrete can withstand forces between 20-32 MPa depending on its exact composition. Further research showed that incorporating urea, a waste product naturally excreted by our bodies through urine, tears, and sweat, can fortify AstroCrete even more, allowing it to withstand close to 40 MPa.

Although these results are based on simulated lunar and martian dust, not the real thing, they are definitely encouraging. The authors estimate that a crew of six astronauts can produce around 500 kgs of high-strength AstroCrete over a two-year mission. It likely won’t be the main material used for construction, but it has potential as a mortar for sandbags or vitrified (heat-fused) regolith bricks. Used in this way, each crew member could supply enough albumin and urea to expand the habitat enough to support one new member. Lodging could thus be doubled on each successive mission at the same site.

“It is exciting that a major challenge of the space age may have found its solution based on inspirations from medieval technology,” said Dr Roberts, noting that animal blood has been used as a binder for building materials in the past.

“The concept is literally blood-curdling”.

The effect can be explained by the proteins in the blood, including albumin, denaturating — in essence, curdling. This results in a much longer molecule that effectively acts the same way as rebar in reinforced concrete, tying everything together.

The paper “Blood, sweat and tears: extraterrestrial regolith biocomposites with in vivo binders” has been published in the journal Materials Today Bio.

share Share

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Evolution just keeps creating the same deep-ocean mutation

Creatures at the bottom of the ocean evolve the same mutation — and carry the scars of human pollution

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.