homehome Home chatchat Notifications


This new approach to spotting incoming asteroids should keep our planet safe

"With the [new method] we can spot objects regardless of their surface color, and use it to measure their sizes and other surface properties," said the researchers.

Alexandru Micu
April 16, 2019 @ 9:45 pm

share Share

New research from NASA will enable us to spot incoming asteroids much earlier than before.

Space.

A collection of images from the WISE spacecraft of the asteroid 2305 King, which is named after Martin Luther King Jr. The asteroid appears as a string of orange dots because this is a set of exposures that have been added together to show its motion across the sky. The images were recorded in infrared and translated to colors in the visible spectrum.
Image credits NASA/JPL.

The Chelyabinsk meteor, although only 17 to 20 meters in diameter, caused extensive damage to people and property when it exploded in Earth’s atmosphere in February 2013. In order to prevent such an event from taking place in the future, NASA researchers have developed a new way to spot incoming asteroids.

Black on black

“If we find an object only a few days from impact, it greatly limits our choices, so in our search efforts we’ve focused on finding NEOs when they are further away from Earth, providing the maximum amount of time and opening up a wider range of mitigation possibilities,” Amy Mainzer, the principal investigator at NASA’s asteroid-hunting mission at the Jet Propulsion Laboratory in Pasadena, California

Mainzer’s colleagues don’t actually plan to see these tiny near-Earth objects (NEOs) as they hurtle toward the planet. It’s simply too much hassle to try and visually spot them. Such bodies are “intrinsically faint,” she explains, as they’re very far away in space and move with great speed. Compounding the issue is that some of these NEOs are “as dark as printer toner” — teasing them out from against the dark background of outer space is thus very difficult. However, the team has a solution, one they will be presenting this week at the American Physical Society April Meeting in Denver.

Instead of using visible light, Mainzer’s team plans to use a characteristic signature of NEOs: their heat. Asteroids and comets get heated up by the sun and, thus, glow brightly in infrared (the wavelength corresponding to heat). The team plans to use the Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) telescope to scan the skies in the infrared spectrum to spot incoming NEOs.

“With the NEOWISE mission we can spot objects regardless of their surface color, and use it to measure their sizes and other surface properties,” Mainzer said.

Her work will do more than just alert us to incoming space rocks. Analysis of each NEO’s infrared output can give us a wealth of information regarding their size and make-up, both critical elements when deciding how to defend ourselves from any threatening asteroid. For instance, one strategy available to us is to physically push a NEO away from an Earth-impact trajectory. In order to successfully pull that off, however, we need to know how heavy it is — in other words, we need to know its size and composition.

Another key area where this research can be applied is in the remote analysis of asteroid composition, which will help us understand how the solar system formed.

“These objects are intrinsically interesting because some are thought to be as old as the original material that made up the solar system,” Mainzer said. “One of the things that we have been finding is that NEOs are pretty diverse in composition.”

“We are proposing to NASA a new telescope, the Near-Earth Object Camera (NEOCam), to do a much more comprehensive job of mapping asteroid locations and measuring their sizes,” she adds.

In their presentation, the team will also explain how NASA is collaborating with the global space community to put up a unified defense against NEOs and their impacts.

The presentation, “NASA’s Planetary Defense Coordination Office at NASA HQ,” will take place at 10:45 a.m. MT, Tuesday, April 16, in room Governor’s Square 14 of the Sheraton Denver Downtown Hotel. An abstract of the presentation is available here.

share Share

Beetles Conquered Earth by Evolving a Tiny Chemical Factory

There are around 66,000 species of rove beetles and one researcher proposes it's because of one special gland.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

These researchers counted the trees in China using lasers

The answer is 142 billion. Plus or minus a few, of course.

New Diagnostic Breakthrough Identifies Bacteria With Almost 100% Precision in Hours, Not Days

A new method identifies deadly pathogens with nearly perfect accuracy in just three hours.

This Tamagotchi Vape Dies If You Don’t Keep Puffing

Yes. You read that correctly. The Stupid Hackathon is an event like no other.

Wild Chimps Build Flexible Tools with Impressive Engineering Skills

Chimpanzees select and engineer tools with surprising mechanical precision to extract termites.

Archaeologists in Egypt discovered a 3,600-Year-Old pharaoh. But we have no idea who he is

An ancient royal tomb deep beneath the Egyptian desert reveals more questions than answers.

Astronauts are about to grow mushrooms in space for the first time. It could help us live on Mars

Mushrooms could become the ultimate food for living in colonies on the moon and Mars.

Researchers create a new type of "time crystal" inside a diamond

“It’s an entirely new phase of matter.”