homehome Home chatchat Notifications


The Arctic Ocean is blooming with algae as the ice sheet melts

This means more food for marine animals, but the net long-term consequences aren't pretty.

Fermin Koop
July 10, 2020 @ 5:30 pm

share Share

A surprising shift is currently happening in the Arctic Ocean, a new study has found. Dark water is blooming with phytoplankton, the tiny algae at the base of the food web, as sunlight floods spaces that used to be obscured by ice that is no longer there.

Credit Flickr

Researchers from Stanford University found that there has been a 57% increase in phytoplankton in the Arctic ocean over the past two decades. This has exceeded the researcher’s expectations, as it’s changing the way the ocean stores carbon and sucking up resources needed for the rest of the ecosystem.

“The rates are really important in terms of how much food there is for the rest of the ecosystem,” Earth system scientist and co-author Kevin Arrigo told Science Alert. “It’s also important because this is one of the main ways that CO2 is pulled out of the atmosphere and into the ocean.”

The Arctic is warming much faster than the rest of the planet, having experienced a temperature increase of 0.75 degrees Celsius (1.35 degrees Fahrenheit) in the last decade alone. Meanwhile, Earth as a whole has warmed by nearly the same amount, 0.8 degrees C, but over the past 137 years.

Arrigo and his colleagues looked at net primary production (NPP), which is a degree of how fast plants and algae convert sunlight and carbon dioxide into sugars that other creatures can eat. They found that NPP in the Arctic increased by 57% between 1998 and 2018. That’s a record jump in productivity for an entire ocean basin.

Even more surprising, they discovered that while NPP increases were initially linked to retreating sea ice, productivity continued to climb even after melting slowed down around 2009. “The increase in NPP over the past decade is due almost exclusively to a recent increase in phytoplankton biomass,” Arrigo said.

This means that phytoplankton was once metabolizing more carbon across the Arctic just because they were gaining more open water over longer growing seasons, thanks to changes in ice cover driven by climate change. Now, they are growing more concentrated, according to the study’s findings.

“In a given volume of water, more phytoplankton were able to grow each year,” said in a statement lead study author Kate Lewis, who worked on the research as a Ph.D. student in Stanford’s Department of Earth System Science. “This is the first time this has been reported in the Arctic Ocean.”

Phytoplankton is absorbing more carbon year after year as new nutrients come into this ocean

Phytoplankton needs plenty of nutrients and light to grow. But their availability on the water column depends on complex factors. As a result, despite the fact that Arctic researchers have observed phytoplankton blooms going into overdrive in recent decades, they have debated how long the boom might last and how high it might climb.

The researchers assembled a massive collection of ocean floor measurements for the Arctic Ocean and built algorithms to estimate the concentration of phytoplankton. This allowed them to find new evidence that continued increases in production may no longer be as limited by scarce nutrients as once suspected.

“We knew the Arctic had increased production in the last few years, but it seemed possible the system was just recycling the same store of nutrients,” Lewis said. “Our study shows that’s not the case. Phytoplankton are absorbing more carbon year after year as new nutrients come into this ocean. That was unexpected, and it has big ecological impacts.”

The work will help to clarify how climate change will shape the Arctic Ocean’s future productivity, food supply and capacity to absorb carbon. There’s going to be winners and losers, according to Arrigo. “A more productive Arctic means more food for lots of animals. But many animals that have adapted to live in a polar environment are finding life more difficult as the ice retreats,” he argued.

The study was published in the journal Science.

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

This 5,500-year-old Kish tablet is the oldest written document

Beer, goats, and grains: here's what the oldest document reveals.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Did Columbus Bring Syphilis to Europe? Ancient DNA Suggests So

A new study pinpoints the origin of the STD to South America.

The Magnetic North Pole Has Shifted Again. Here’s Why It Matters

The magnetic North pole is now closer to Siberia than it is to Canada, and scientists aren't sure why.

For better or worse, machine learning is shaping biology research

Machine learning tools can increase the pace of biology research and open the door to new research questions, but the benefits don’t come without risks.

This Babylonian Student's 4,000-Year-Old Math Blunder Is Still Relatable Today

More than memorializing a math mistake, stone tablets show just how advanced the Babylonians were in their time.

Sixty Years Ago, We Nearly Wiped Out Bed Bugs. Then, They Started Changing

Driven to the brink of extinction, bed bugs adapted—and now pesticides are almost useless against them.

LG’s $60,000 Transparent TV Is So Luxe It’s Practically Invisible

This TV screen vanishes at the push of a button.

Couple Finds Giant Teeth in Backyard Belonging to 13,000-year-old Mastodon

A New York couple stumble upon an ancient mastodon fossil beneath their lawn.