homehome Home chatchat Notifications


New compounds fight drug-resistant bacteria by turning their membranes into prison cells

"This approach can be applied to other antibiotics and help us discover new ones," the team explains.

Alexandru Micu
February 18, 2020 @ 10:16 pm

share Share

Two new antibiotic compounds join the fight against drug-resistant bacteria.

Staphylococcus aureus seen under the electron microscope.
Image credits Mogana Das Murtey, Patchamuthu Ramasamy.

The compounds have been named corbomycin and complestatin, and are part of the glycopeptide family of antibiotics produced by soil bacteria (the Actinomycetes family in particular). The unique way in which they attack bacteria makes them very promising candidates against drug-resistant infections, the study reports.

Don’t tear down this wall

The study reports that laboratory studies on mice showed that these two substances interact with bacteria in a completely different way from anything we’ve seen before.

“Bacteria have a wall around the outside of their cells that gives them shape and is a source of strength,” said study first author Beth Culp, a PhD candidate in biochemistry and biomedical sciences at McMaster.

“Antibiotics like penicillin kill bacteria by preventing building of the wall, but the antibiotics that we found actually work by doing the opposite — they prevent the wall from being broken down. This is critical for cell to divide.”

Both corbomycin and complestatin have proven themselves effective in combating Methicillin-resistant Staphylococcus aureus (MRSA), a family of bacteria that is highly resistant to antibiotics and is responsible for many serious, potentially life-threatening infections today.

Glycopeptides inhibit the growth of cell membranes by blocking the synthesis of peptidoglycan, which is a vital building block. It may not sound like much of a hassle but this effectively prevents bacteria from multiplying, as they need to generate extra membrane before dividing. These two compounds essentially ensures the bacteria are “trapped in a prison, and can’t expand or grow.”

For the study, the team started with a list of known glycopeptides — a chemical class that includes some of the most powerful and dangerous antibiotics humanity has ever wielded — and the microbial genes that encode their synthesis. They hoped that compounds encoded in different genes would also engage bacteria in different ways. This step set them on the trail of corbomycin and complestatin.

Looking at the family tree of known members of the glycopeptides, researchers studied the genes of those lacking known resistance mechanisms, with the idea they may be antibiotics demonstrating a different way to attack bacteria. Further testing in collaboration with Yves Brun and his team from the Université de Montréal carried out with cell imaging equipment, revealed how they acted on bacterial membranes.

“This approach can be applied to other antibiotics and help us discover new ones with different mechanisms of action,” Culp explains. “We found one completely new antibiotic in this study, but since then, we’ve found a few others in the same family that have this same new mechanism.”

One of the most exciting findings of the study is that the compounds show efficiency even against Enterococcus strains resistant to vancomycin and S. aureus strains that show an intermediate resistance to vancomycin. Vancomycin is used as a last-line-of-defense antibiotic against gram-positive infections that do not respond to any other treatment.

The paper “Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling” has been published in the journal Nature.

share Share

Underwater Tool Use: These Rainbow-Colored Fish Smash Shells With Rocks

Wrasse fish crack open shells with rocks in behavior once thought exclusive to mammals and birds.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

Scientists Found a 380-Million-Year-Old Trick in Velvet Worm Slime That Could Lead To Recyclable Bioplastic

Velvet worm slime could offer a solution to our plastic waste problem.

A Dutch 17-Year-Old Forgot His Native Language After Knee Surgery and Spoke Only English Even Though He Had Never Used It Outside School

He experienced foreign language syndrome for about 24 hours, and remembered every single detail of the incident even after recovery.

Your Brain Hits a Metabolic Cliff at 43. Here’s What That Means

This is when brain aging quietly kicks in.

Scientists Just Found a Hidden Battery Life Killer and the Fix Is Shockingly Simple

A simple tweak could dramatically improve the lifespan of Li-ion batteries.

Westerners cheat AI agents while Japanese treat them with respect

Japan’s robots are redefining work, care, and education — with lessons for the world.

Scientists Turn to Smelly Frogs to Fight Superbugs: How Their Slime Might Be the Key to Our Next Antibiotics

Researchers engineer synthetic antibiotics from frog slime that kill deadly bacteria without harming humans.

This Popular Zero-Calorie Sugar Substitute May Be Making You Hungrier, Not Slimmer

Zero-calorie sweeteners might confuse the brain, especially in people with obesity

Any Kind of Exercise, At Any Age, Boosts Your Brain

Even light physical activity can sharpen memory and boost mood across all ages.