homehome Home chatchat Notifications


Ant colonies resemble neural networks when making decisions

Both outside information and the colony's own properties matter in this process.

Alexandru Micu
July 21, 2022 @ 6:44 pm

share Share

Groups of individual ants create decision-making networks very similar to those created by neurons in a brain.

Image via Pixabay.

New research from the Rockefeller University suggests that colonies of ants make decisions collectively, with outcomes dependent both on the magnitude of the stressor requiring a decision as well as the size of the ant group. The findings suggest that ants combine sensory information about their environment with parameters of their colony to arrive at a group response.

Most interestingly of all, this process is similar to the way neural networks make decisions.

Working together

“We pioneered an approach to understand the ant colony as a cognitive-like system that perceives inputs and then translates them into behavioral outputs,” says Daniel Kronauer, head of the Laboratory of Social Evolution and Behavior at Rockefeller, and lead author of the paper. “This is one of the first steps toward really understanding how insect societies engage in collective computation.”

The team explains that decision-making is all about handling a series of computations in such a way as to maximize benefits and minimize costs. In sensory response thresholding for example — this is a common type of decision-making for living organisms — an animal has to feel a particular sensory input such as pain past a certain level to embark on a costly behavior, such as running away. If the input isn’t strong enough, the response is not ‘worth it’.

The authors wanted to investigate how this type of information processing occurs on a collective level, and how group dynamics influence which decision is taken and how. For this, they developed a system in which they could introduce highly-controlled temperature changes to an ant colony. The behavioral responses of ants and the colony as a whole was tracked by marking each insect with colored dots and following their movements on video.

As they expected, a colony of 36 workers and 18 larvae readily evacuated their nest when temperatures were increased to 34 degrees Celsius, which is uncomfortably warm for the insects. What was surprising, however, was to see that colony size has an effect on the decision to move, as well: for a colony of over 200 individuals, the temperatures required to make them move were in excess of 36 degrees.

“It seems that the threshold isn’t fixed. Rather, it’s an emergent property that changes depending on the group size,” Kronauer says.

But individual ants are unaware of the total size of the colony, so how does this influence their decision to leave? The authors believe the explanation has to do with the way pheromones, the chemicals ants use to communicate, scale in effect when more ants are present. They propose a mathematical framework that describes this communication and how numbers can influence its effectiveness.

It is also possible that the larger a colony grows, the more difficult it is to move. So higher temperatures — more discomfort — will be needed to convince them that the effort required to relocate is ‘worth it’.

In the future, the duo plans to further refine their theoretical model for the decision-making process in the ant colony by introducing more parameters into the experiment and seeing how the insects respond. For example, they plan to tamper with the pheromone levels in the enclosure, or to create genetically-modified ants whose ability to detect temperatures varies from the norm.

“What we’ve been able to do so far is to perturb the system and measure the output precisely,” Kronauer says. “In the long term, the idea is to reverse engineer the system to deduce its inner workings in more and more detail.”

The paper “The emergence of a collective sensory response threshold in ant colonies” has been published in the journal Proceedings of the National Academy of Sciences.

share Share

The Sound of the Big Bang Might Be Telling Us Our Galaxy Lives in a Billion-Light-Year-Wide Cosmic Hole

Controversial model posits Earth and our galaxy may reside in a supervoid.

What did ancient Rome smell like? Fish, Raw Sewage, and Sometimes Perfume

Turns out, Ancient Rome was pretty rancid.

These bizarre stars could be burning darkness to survive

Our quest for dark matter is sending us on some wild adventures.

The new fashion trend among chimpanzees: sticking grass in your ear (and butt)

A new trend is making the rounds in a chimp community.

Scientists Created an Evolution Engine That Works Inside Animal Cells Like a Biological AI

This system accelerates evolution in living cells and it's open source.

A Common Cough Syrup Might Protect the Brain in Parkinson’s Dementia

An old drug reveals new potential — but only in some patients.

A Common DNA Sugar Just Matched Minoxidil in Hair Regrowth Tests on Mice

Is the future of hair regrowth hidden in 2-deoxy-D-ribose?

This Abandoned Island Off Venice Was a Plague Hospital, a Mental Asylum, and a Mass Grave

It's one of the creepiest places you can imagine.

Being Left-Handed Might Not Make You More Creative After All

It's less about how you use your hands than how you use your brain.

Interstellar comet: Everything We Know About 3I/ATLAS

The visitor is simply passing through our solar system.