homehome Home chatchat Notifications


Scientists zoom-in on the effects of air pollution at the molecular level

Air pollution triggers a cascade of molecular changes inside the body.

Tibi Puiu
May 29, 2019 @ 11:04 pm

share Share

Air pollution threatens the health of more than 90% of the world’s population — and it all starts with changes triggered at the molecular level. In a newly published study which followed pollution levels before, during, and after the 2008 Beijing Olympic Games, researchers at the University of Buffalo found that 69 metabolites were affected when air pollution changed.

Credit: Pixabay.

Credit: Pixabay.

Metabolites are the end products of the body’s metabolism as well as the results of environmental exposures. Beijing, a city numbering over 21 million people, is one of the most polluted cities in the world. But during the 2008 Olympic Games, local authorities enacted temporary measures that cleared the air — at least for the duration of the games.

[panel style=”panel-info” title=”How air pollution affects human health” footer=””]

While most of the world’s population focuses their attention on global terrorism and economics, scientists are becoming increasingly alarmed at how air pollution affects human health. Research indicates that 5.5 million people around the globe die prematurely every year due to indoor and outdoor air pollution.

People suffer both short-term and long-term health effects from air pollution, and it causes diseases and complications in nearly every system of the body. Some of these include:

  • Respiratory and cardiovascular diseases
  • Neuropsychiatric complications (i.e., seizures, attention deficits, palsies, migraine headaches, and mood disorders)
  • Eye irritation
  • Skin diseases
  • Cancer
  • Infertility
  • Birth defects
  • Premature death

[/panel]

For their study, Lina Mu, an Associate Professor of epidemiology and environmental health, along with colleagues at the University of Buffalo, studied data on 201 adults. The authors performed metabolomics analysis on a subset of 26 non-smokers aged 30 to 65 before the games (when air pollution was at its highest), during the games (when air pollution was low), and after (when air pollution returned to their alarmingly high levels).

The authors used a technique called the “omics” method — based on network analysis — to record changes in all detectable metabolites simultaneously (886 for this study), rather than examining these molecules one by one.

“We found that these metabolites together depicted a relatively comprehensive picture of human body responses to air pollution,” said paper co-author Rachael Hageman Blair, associate professor of biostatistics at UB.

Lina Mu. Credit: University at Buffalo.

Lina Mu. Credit: University at Buffalo.

When air pollutants are inhaled, they immediately stimulate the respiratory system, particularly the lungs and nose. Some cell membranes get damaged or even broken, disrupting the secretion of those cells. In the process, the damaged cells may send out signals to other organs and cells in the body, triggering biological responses. Basically, all these broken membranes, secreted products, and signaling molecules are metabolites.

“Think of our body as a society. These metabolites fulfill different positions, such as teacher, farmer, worker, soldier. We need each one functioning properly in order to maintain a healthy system,” said in a statement.

Two major metabolic signatures were identified: one consisting of lipids, the other made up of dipeptides, polyunsaturated fatty acids, taurine, and xanthine. These molecules are produced by the body in response to cellular stability, oxidative stress (which breaks cell membranes), and inflammation (triggered by lipid molecules released by broken cell membranes).

“The good thing is that we also found some protective molecules, namely antioxidants, also increased when air pollution is high, indicating our body has a defense system to reduce harm,” Mu said.

According to Mu, studies like this provide a broader view of the molecular mechanisms involved in the interactions between air pollution and the human body. In the future, it might be possible to identify individuals who are more vulnerable to air pollution — these people could be then guided to avoid exposure or receive custom treatment.

The findings appeared in the journal Environmental Health Perspectives..

share Share

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

An Experimental Drug Just Slashed Genetic Heart Risk by 94%

One in 10 people carry this genetic heart risk. There's never been a treatment — until now.

We’re Getting Very Close to a Birth Control Pill for Men

Scientists may have just cracked the code for male birth control.

A New Antibiotic Was Hiding in Backyard Dirt and It Might Save Millions

A new antibiotic works when others fail.

Researchers Wake Up Algae That Went Dormant Before the First Pyramids

Scientists have revived 7,000-year-old algae from Baltic Sea sediments, pushing the limits of resurrection ecology.

A Fossil So Strange Scientists Think It’s From a Completely New Form of Life

This towering mystery fossil baffled scientists for 180 Years and it just got weirder.

ChatGPT Seems To Be Shifting to the Right. What Does That Even Mean?

ChatGPT doesn't have any political agenda but some unknown factor is causing a subtle shift in its responses.

This Freshwater Fish Can Live Over 120 Years and Shows No Signs of Aging. But It Has a Problem

An ancient freshwater species may be quietly facing a silent collapse.

The US wants to know if researchers in other countries follow MAGA doctrine

Science and policy are never truly free from one another. But one country's policy doesn't typically cross borders.

A Week of Cold Plunges Could Help Your Cells Fight Aging and Disease

Cold exposure "trains" cells to be more efficient at cleaning themselves up.