homehome Home chatchat Notifications


A thousand mysterious magnetic strands found dangling from the Milky Way

Our galaxy's center has strands nearly 150 light years long, spread across like strings on a harp.

Mihai Andrei
January 28, 2022 @ 8:22 pm

share Share

A mosaic image of the center of the Milky Way, captured with radiowaves. The magnetic filaments are large, vertical slashes throughout the image. Credit: Northwestern University.

Sometimes, astronomic discoveries are so immensely weird that it’s hard to know what to make of them. This is exactly the case here.

It all started in the 1980s when researchers led by Northwestern University’s Farhad Yusef-Zadeh discovered a few highly organized, magnetic filaments seemingly stretching out of the central area of the Milky Way galaxy. These strands appeared to be made of cosmic ray electrons that were rotating their magnetic fields at near the speed of light. But why these strands exist and what exactly they are has remained a mystery.

It’s still a mystery today, but we’ve moved closer to understanding them. In a new study, Yusef-Zadeh’s team used data from the South African Radio Astronomy Observatory (SARAO) — particularly, the MeerKAT radio telescope. The telescope enabled the researchers to visualize the strands in unprecedented detail, finding startling details about them.

This labeled mosaic shows the chaotic nature of the center of the Milky Way.

For starters, there’s much more of them than previously expected. They’re essentially one-dimensional, like strings, except these strings measure around 150 light-years in length. They also appear to be surprisingly ordered. Within clusters, they are separated from one another at nearly perfectly equal distances — about the distance from the Earth to the Sun.

A harp-like cluster. Credit: Northwestern University.

“They almost resemble the regular spacing in solar loops,” Yusef-Zadeh said. “We still don’t know why they come in clusters or understand how they separate, and we don’t know how these regular spacings happen. Every time we answer one question, multiple other questions arise.”

They also seem to neighbor the galactic center, as well as newly-discovered supernova remnants. But there’s a difference: the filaments exhibit a radiation pattern different from that of the supernova, suggesting that the phenomena have different origins.

However, we still have no idea when and why they formed, or how exactly the electrons change their magnetic field so quickly.

“How do you accelerate electrons at close to the speed of light?” he asked. “One idea is there are some sources at the end of these filaments that are accelerating these particles.”

Nevertheless, the fact that they’ve now uncovered so many of these filaments means researchers can actually study them statistically, and maybe some information can emerge from this study, Yusef-Zadeh believes. His team is currently cataloging each filament, noting the angle, curve, magnetic field, spectrum, and intensity.

“If you were from another planet, for example, and you encountered one very tall person on Earth, you might assume all people are tall. But if you do statistics across a population of people, you can find the average height,” Yusef-Zadeh explains.

“That’s exactly what we’re doing. We can find the strength of magnetic fields, their lengths, their orientations and the spectrum of radiation.”

Having spent decades looking at these filaments, Yusef-Zadeh still rejoices in learning about such a unique structure. This is all possible thanks to the advent of powerful telescopes, he emphasizes.

“I’ve spent a lot of time looking at this image in the process of working on it, and I never get tired of it,” Heywood said. “When I show this image to people who might be new to radio astronomy, or otherwise unfamiliar with it, I always try to emphasize that radio imaging hasn’t always been this way, and what a leap forward MeerKAT really is in terms of its capabilities. It’s been a true privilege to work over the years with colleagues from SARAO who built this fantastic telescope.”

Journal Reference: F. Yusef-Zadeh et al, Statistical Properties of the Population of the Galactic Center Filaments: The Spectral Index and Equipartition Magnetic Field. arXiv:2201.10552v1 [astro-ph.GA], arxiv.org/pdf/2201.10552.pdf

I. Heywood et al, The 1.28 GHz MeerKAT Galactic Center Mosaic. arXiv:2201.10541v1 [astro-ph.GA], arxiv.org/abs/2201.10541

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

America’s Favorite Christmas Cookies in 2024: A State-by-State Map

Christmas cookie preferences are anything but predictable.

The 2,500-Year-Old Gut Remedy That Science Just Rediscovered

A forgotten ancient clay called Lemnian Earth, combined with a fungus, shows powerful antibacterial effects and promotes gut health in mice.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Hidden for Centuries, the World’s Largest Coral Colony Was Mistaken for a Shipwreck

This massive coral oasis offers a rare glimmer of hope.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Scientists Say Antimatter Rockets Could Get Us to the Stars Within a Lifetime — Here’s the Catch

The most explosive fuel in the universe could power humanity’s first starship.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

This Wild Quasiparticle Switches Between Having Mass and Being Massless. It All Depends on the Direction It Travels

Scientists have stumbled upon the semi-Dirac fermion, first predicted 16 years ago.

New Study Suggests GPT Can Outsmart Most Exams, But It Has a Weakness

Professors should probably start changing how they evaluate students.