homehome Home chatchat Notifications


Three dimensional printing goes metal: University of Twente researchers print copper and gold

The development of a method that would allow for metals to be used in 3D printing would open up a huge range of new possibilities, as the robustness and good thermal and electrical conductivity of metals lend well to a number of fields, such as microelectronics. A team from the University of Twente has developed a way to print 3D structures out of copper and gold, by using a pulsed laser to melt a thin film of metal and stacking the small droplets.

Alexandru Micu
June 11, 2015 @ 9:28 am

share Share

A team from the University of Twente has developed a way to print 3D structures out of copper and gold, by using a pulsed laser to melt a thin film of metal and stacking the small droplets.

High energy lasers are used to create fast-flowing metal droplets.
Image via: gizmag.com

The rapid development and huge potential of 3D printing has many hailing the field as the next “cornerstone of the manufacturing industry.” Currently, however, we are limited mostly to printing plastics. The development of a method that would allow for metals to be used would open up a huge range of new possibilities, as the robustness and good thermal and electrical conductivity of metals lend well to a number of fields, such as microelectronics. However, the high temperatures at which metals melt make the precise deposition of the molten material very challenging. Thermally resistant nozzles are also required to process the scalding material, but these aren’t readily available.

Now, researchers at the University of Twente made a major breakthrough in metal printing. They used a high intensity pulse laser to melt thin films of copper and gold into micrometer-sized flying droplets. These are then stacked in a controlled manner, and used to create three dimensional structures. It can be used to print virtually any shape. For example, they stacked thousands of the tiny drops to form micro-pillars 2 millimeters in height and 5 micrometers in diameter and went on to print vertical electrodes in a cavity, and lines of copper using the same device.

Nothing says “sturdy” quite like a 5 micron-thick metal pillar.
Image via: gizmag.com

During earlier attempts, the drops stayed spherical, and stacks of such drops were not very stable. The team used a surprisingly powerful laser compared to previous attempts, which improves velocity of the molten material. When the higher speed droplets hit the substrate, they deform and solidify into a tiny disk. This shape is essential for sturdy printing, as it allows researchers to firmly stack the droplets one on top of the other.

The article also studies how speed affects drop shape. The team previously predicted the speed intervals needed to achieve the desire shape for different materials and laser engines. As such, the results can be easily translated to other metals.

One problem they couldn’t overcome was that the high laser energy also makes droplets’ trajectories describe a cone, not a straight line, affecting the printing precision. The team aims to study the effect, to enable clean printing with materials such as metals, gels or extremely thick fluids.

share Share

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.

Scientists Created a Chymeric Mouse Using Billion-Year-Old Genes That Predate Animals

A mouse was born using prehistoric genes and the results could transform regenerative medicine.

Americans Will Spend 6.5 Billion Hours on Filing Taxes This Year and It’s Costing Them Big

The hidden cost of filing taxes is worse than you think.

Evolution just keeps creating the same deep-ocean mutation

Creatures at the bottom of the ocean evolve the same mutation — and carry the scars of human pollution