ZME Science
No Result
View All Result
ZME Science
No Result
View All Result
ZME Science

Home → Research → Materials

Viruses assemble key components for the lithium-air batteries of the future

Tibi PuiubyTibi Puiu
November 14, 2013 - Updated on January 6, 2014
in Materials, News, Research, Science
A A
Share on FacebookShare on TwitterSubmit to Reddit

In a synergy between biology and electrochemistry, researchers at MIT cleverly exploited genetically modified viruses to assemble metal molecules into extremely thin nanowires that can be used as cathodes in a lithium-air battery. This type of battery has been thoroughly researched in the past few years and has sparked the interest of scientists because of its tremendous potential to store high amounts of energy per unit size. For instance, such batteries can carry as much as three times the amount of energy per area than a lithium-ion battery, currently the de facto mobile energy storage medium used for everything from mobile phones to notebooks to electric cars.

mit_biological_nanowires
(C) Courtesy of MIT

The MIT researchers specifically genetically designed a virus called M13 which has an inherent affinity for capturing metal molecules from water and binding them together to form structures – he’s quite the nifty builder, too. The team demonstrated that the virus could assemble manganese oxide molecules (a favored material for lithium-air battery cathode) into nanowires as thin as 80 nanometers or about the width of a blood cell.

Biologically driven nanowires

The process doesn’t construct perfectly smooth wires, which in our case is a good thing. The rougher the surface, the better, since you want as many lithium molecules to come into contact with the cathode material as possible – this way you don’t just have an almost 2D surface for molecules to cling on, but a 3-D one. Also, the viruses naturally produce a three-dimensional structure of cross-linked wires, which provides greater stability for an electrode. Another positive point going to the virus generation method is that unlike conventional chemical manganese oxide assembly methods, which are extremely energy intensive requiring a high temperature environment, the present process can be run at room temperature.

[RELATED] World’s smallest battery created with a nanowire

To make the nanowires more electrically conductive and of course provide the cathode with catalysis capabilities, the wires are doped with palladium nanoparticles. Other methods involve making cathode nanowires in bulk materials which translates in a lot of palladium being used, and as you may know it’s a very expensive material.

One of the lead authors of the paper, MIT Professor Angela Belcher, envisions the whole process akin to how an abalone grows its shell —  by collecting calcium from seawater and depositing it into a solid, linked structure.

RelatedPosts

How supercapacitors could usher in a new age for hybrid vehicles
New York is planning wireless charging manholes for electric cars
Electric Car Battery Charges in Under Five Minutes: Goodbye Range Anxiety?
Norway is already selling more electric vehicles than conventional ones

Belcher stresses, however, that their work only details how a cathode could be made for a lithium-air battery. It still remains to be seen how the anode or the electrolyte (the material or solution that allows lithium ions to pass to the anode and complete the electrochemical reaction) will be assembled. A big questions arises, as well. Can this method be scaled? Well, it might be difficult to grow millions of cathode nanowires using viruses alone, but it’s possible that actual manufacturing might be done in a different way. This has happened with past materials developed in her lab, she says: The chemistry was initially developed using biological methods, but then alternative means that were more easily scalable for industrial-scale production were substituted in the actual manufacturing.

The work was detailed in a paper published in the journal Nature Communications. 

 

 

Tags: anodecathodeelectric carelectrolytelithium-air batterylithium-ion batterynanowire

ShareTweetShare
Tibi Puiu

Tibi Puiu

Tibi is a science journalist and co-founder of ZME Science. He writes mainly about emerging tech, physics, climate, and space. In his spare time, Tibi likes to make weird music on his computer and groom felines. He has a B.Sc in mechanical engineering and an M.Sc in renewable energy systems.

Related Posts

Future

Korean researchers used carbon nanotubes to build a motor that’s five times lighter

byMihai Andrei
2 weeks ago
News

Electric Car Battery Charges in Under Five Minutes: Goodbye Range Anxiety?

byTibi Puiu
10 months ago
Environment

This Surprising Trick Could Make Your Lithium-Ion Batteries Last 50% Longer

byTibi Puiu
10 months ago
Environment

We need to make electric cars noisier. Otherwise, they can be dangerous to pedestrians

byMihai Andrei
1 year ago

Recent news

The Sound of the Big Bang Might Be Telling Us Our Galaxy Lives in a Billion-Light-Year-Wide Cosmic Hole

July 9, 2025
AI-generated image.

What did ancient Rome smell like? Fish, Raw Sewage, and Sometimes Perfume

July 9, 2025

These bizarre stars could be burning darkness to survive

July 9, 2025
  • About
  • Advertise
  • Editorial Policy
  • Privacy Policy and Terms of Use
  • How we review products
  • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.

No Result
View All Result
  • Science News
  • Environment
  • Health
  • Space
  • Future
  • Features
    • Natural Sciences
    • Physics
      • Matter and Energy
      • Quantum Mechanics
      • Thermodynamics
    • Chemistry
      • Periodic Table
      • Applied Chemistry
      • Materials
      • Physical Chemistry
    • Biology
      • Anatomy
      • Biochemistry
      • Ecology
      • Genetics
      • Microbiology
      • Plants and Fungi
    • Geology and Paleontology
      • Planet Earth
      • Earth Dynamics
      • Rocks and Minerals
      • Volcanoes
      • Dinosaurs
      • Fossils
    • Animals
      • Mammals
      • Birds
      • Fish
      • Amphibians
      • Reptiles
      • Invertebrates
      • Pets
      • Conservation
      • Animal facts
    • Climate and Weather
      • Climate change
      • Weather and atmosphere
    • Health
      • Drugs
      • Diseases and Conditions
      • Human Body
      • Mind and Brain
      • Food and Nutrition
      • Wellness
    • History and Humanities
      • Anthropology
      • Archaeology
      • History
      • Economics
      • People
      • Sociology
    • Space & Astronomy
      • The Solar System
      • Sun
      • The Moon
      • Planets
      • Asteroids, meteors & comets
      • Astronomy
      • Astrophysics
      • Cosmology
      • Exoplanets & Alien Life
      • Spaceflight and Exploration
    • Technology
      • Computer Science & IT
      • Engineering
      • Inventions
      • Sustainability
      • Renewable Energy
      • Green Living
    • Culture
    • Resources
  • Videos
  • Reviews
  • About Us
    • About
    • The Team
    • Advertise
    • Contribute
    • Editorial policy
    • Privacy Policy
    • Contact

© 2007-2025 ZME Science - Not exactly rocket science. All Rights Reserved.