homehome Home chatchat Notifications


Uranus orbit tipped on its side by a series of Earth-sized impacts

Uranus, the seventh planet from the sun, is a definite oddball of the solar system. It has its axis titled by a whopping 98 degrees, which makes it orbit on its side. The general accepted theory is that a big impact with an object several times the size that of the Earth nodged its axis […]

Tibi Puiu
October 7, 2011 @ 11:59 am

share Share

Near-infrared views of Uranus and its faint ring system, shown here to highlight the extent to which it is tilted. (c) Lawrence Sromovsky, (Univ. Wisconsin-Madison), Keck Observatory.

Near-infrared views of Uranus and its faint ring system, shown here to highlight the extent to which it is tilted. (c) Lawrence Sromovsky, (Univ. Wisconsin-Madison), Keck Observatory.

Uranus, the seventh planet from the sun, is a definite oddball of the solar system. It has its axis titled by a whopping 98 degrees, which makes it orbit on its side. The general accepted theory is that a big impact with an object several times the size that of the Earth nodged its axis massively, however a new study presented recently at the EPSC-DPS Joint Meeting in Nantes rewrites our theories of how Uranus became so tilted and gives new valuable insight as to how giant planets form.

As a comparisson Jupiter’s spin axis is only tilted by 3 degrees; Earth’s, 23 degrees; Saturn and Neptune, 29 degrees. Seeing how Neptun’s axis is tilted more than 3 times that of the second titled axis in the solar system has always puzzled astronomers. For many years now, the leading hyphotesis was that of a giant space object, a few times the size of Earth, plunged into the giant planet and deviated its axis. The one, major flaw to this supposition, however, is that, if true, Uranus’ moons should have been left orbiting in their original angles, but they too lie at almost exactly 98 degrees.

The answer, scientists say, is that Neptun was struck in multiple high impacts, instead of one. Alessandro Morbidelli (Observatoire de la Cote d’Azur in Nice, France), lead study author, and his international team of scientists used complex planetary simulations to reproduce various impact scenarios in order to ascertain the most likely cause of Uranus’ tilt. They discovered that if Uranus had been hit when still surrounded by a protoplanetary disk – the material from which the moons would form – then the disk would have reformed into a fat doughnut shape around the new, highly-tilted equatorial plane.

Planet formation theory revised

With this set-up simulation in place, however, the moons displayed a retrograde motion, opposite to the motion that can be observed today. Their explanation: Uranus was not tilted in one go, as is commonly thought, but rather was bumped in at least two smaller collisions, then there is a much higher probability of seeing the moons orbit in the direction we observe.

“The formation history of Uranus and Neptune is one of the most important open problems in planetary science. Having shown that giant collisions had to happen frequently on these planets is an important piece of information on the way to understanding their origin,” lead author Alessandro Morbidelli, with the Observatory of Cote d’Azur in Nice, France, wrote in an email to Discovery News.

Morbidelli’s research is currently conflicting current planetary formation theories, which might need to be revised.

“The standard planet formation theory assumes that Uranus, Neptune and the cores of Jupiter and Saturn formed by accreting only small objects in the protoplanetary disk. They should have suffered no giant collisions. The fact that Uranus was hit at least twice suggests that significant impacts were typical in the formation of giant planets. So, the standard theory has to be revised.”

share Share

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

This strange rock on Mars is forcing us to rethink the Red Planet’s history

A strange rock covered in tiny spheres may hold secrets to Mars’ watery — or fiery — past.

We Should Start Worrying About Space Piracy. Here's Why This Could be A Big Deal

“We are arguing that it’s already started," say experts.

The most successful space telescope you never heard of just shut down

An astronomer says goodbye to Gaia, the satellite that mapped the galaxy.

Astronauts are about to grow mushrooms in space for the first time. It could help us live on Mars

Mushrooms could become the ultimate food for living in colonies on the moon and Mars.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

Dark Energy Might Be Fading and That Could Flip the Universe’s Fate

Astronomers discover hints that the force driving cosmic expansion could be fading

Curiosity Just Found Mars' Biggest Organic Molecules Yet. It Could Be A Sign of Life

The discovery of long-chain organic compounds in a 3.7-billion-year-old rock raises new questions about the Red Planet’s past habitability.

Astronomers Just Found Oxygen in a Galaxy Born Only 300 Million Years After the Big Bang

The JWST once again proves it might have been worth the money.

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.