homehome Home chatchat Notifications


Uranus orbit tipped on its side by a series of Earth-sized impacts

Uranus, the seventh planet from the sun, is a definite oddball of the solar system. It has its axis titled by a whopping 98 degrees, which makes it orbit on its side. The general accepted theory is that a big impact with an object several times the size that of the Earth nodged its axis […]

Tibi Puiu
October 7, 2011 @ 11:59 am

share Share

Near-infrared views of Uranus and its faint ring system, shown here to highlight the extent to which it is tilted. (c) Lawrence Sromovsky, (Univ. Wisconsin-Madison), Keck Observatory.

Near-infrared views of Uranus and its faint ring system, shown here to highlight the extent to which it is tilted. (c) Lawrence Sromovsky, (Univ. Wisconsin-Madison), Keck Observatory.

Uranus, the seventh planet from the sun, is a definite oddball of the solar system. It has its axis titled by a whopping 98 degrees, which makes it orbit on its side. The general accepted theory is that a big impact with an object several times the size that of the Earth nodged its axis massively, however a new study presented recently at the EPSC-DPS Joint Meeting in Nantes rewrites our theories of how Uranus became so tilted and gives new valuable insight as to how giant planets form.

As a comparisson Jupiter’s spin axis is only tilted by 3 degrees; Earth’s, 23 degrees; Saturn and Neptune, 29 degrees. Seeing how Neptun’s axis is tilted more than 3 times that of the second titled axis in the solar system has always puzzled astronomers. For many years now, the leading hyphotesis was that of a giant space object, a few times the size of Earth, plunged into the giant planet and deviated its axis. The one, major flaw to this supposition, however, is that, if true, Uranus’ moons should have been left orbiting in their original angles, but they too lie at almost exactly 98 degrees.

The answer, scientists say, is that Neptun was struck in multiple high impacts, instead of one. Alessandro Morbidelli (Observatoire de la Cote d’Azur in Nice, France), lead study author, and his international team of scientists used complex planetary simulations to reproduce various impact scenarios in order to ascertain the most likely cause of Uranus’ tilt. They discovered that if Uranus had been hit when still surrounded by a protoplanetary disk – the material from which the moons would form – then the disk would have reformed into a fat doughnut shape around the new, highly-tilted equatorial plane.

Planet formation theory revised

With this set-up simulation in place, however, the moons displayed a retrograde motion, opposite to the motion that can be observed today. Their explanation: Uranus was not tilted in one go, as is commonly thought, but rather was bumped in at least two smaller collisions, then there is a much higher probability of seeing the moons orbit in the direction we observe.

“The formation history of Uranus and Neptune is one of the most important open problems in planetary science. Having shown that giant collisions had to happen frequently on these planets is an important piece of information on the way to understanding their origin,” lead author Alessandro Morbidelli, with the Observatory of Cote d’Azur in Nice, France, wrote in an email to Discovery News.

Morbidelli’s research is currently conflicting current planetary formation theories, which might need to be revised.

“The standard planet formation theory assumes that Uranus, Neptune and the cores of Jupiter and Saturn formed by accreting only small objects in the protoplanetary disk. They should have suffered no giant collisions. The fact that Uranus was hit at least twice suggests that significant impacts were typical in the formation of giant planets. So, the standard theory has to be revised.”

share Share

How Hot is the Moon? A New NASA Mission is About to Find Out

Understanding how heat moves through the lunar regolith can help scientists understand how the Moon's interior formed.

A Huge, Lazy Black Hole Is Redefining the Early Universe

Astronomers using the James Webb Space Telescope have discovered a massive, dormant black hole from just 800 million years after the Big Bang.

Should we treat Mars as a space archaeology museum? This researcher believes so

Mars isn’t just a cold, barren rock. Anthropologists argue that the tracks of rovers and broken probes are archaeological treasures.

Proba-3: The Budget Mission That Creates Solar Eclipses on Demand

Now scientists won't have to travel from one place to another to observe solar eclipses. They can create their own eclipses lasting for hours.

This Supermassive Black Hole Shot Out a Jet of Energy Unlike Anything We've Seen Before

A gamma-ray flare from a black hole 6.5 billion times the Sun’s mass leaves scientists stunned.

Astronauts will be making sake on the ISS — and a cosmic bottle will cost $650,000

Astronauts aboard the ISS are brewing more than just discoveries — they’re testing how sake ferments in space.

Superflares on Sun-Like Stars Are Much More Common Than We Thought

Sun-like stars release massive quantities of radiation into space more often than previously believed.

Astronomers Just Found Stars That Mimic Pulsars -- And This May Explain Mysterious Radio Pulses in Space

A white dwarf/M dwarf binary could be the secret.

These Satellites Are About to Create Artificial Solar Eclipses — And Unlock the Sun's Secrets

Two spacecraft will create artificial eclipses to study the Sun’s corona.

Mars Dust Storms Can Engulf Entire Planet, Shutting Down Rovers and Endangering Astronauts — Now We Know Why

Warm days may ignite the Red Planet’s huge dust storms.