homehome Home chatchat Notifications


Nano-tech solar cells reach 18.2% efficiency without anti-reflective layers

In a fantastic breakthrough in solar energy, scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have devised solar cells using nanotechnology which have had a recorded efficiency as high as 18.2%. Now, this alone is far from being deemed impressive, considering the current most efficient solar cells are 35% plus. What […]

Tibi Puiu
October 17, 2012 @ 1:39 pm

share Share

In a fantastic breakthrough in solar energy, scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) have devised solar cells using nanotechnology which have had a recorded efficiency as high as 18.2%. Now, this alone is far from being deemed impressive, considering the current most efficient solar cells are 35% plus. What makes their research a novel scientific progress is that they managed to attain these figures without using anti-reflective layers, critical to commercial solar panel functionality, but which are extremely expensive. Capitalizing on their findings, a new generation of nano-based solar cells that do not require anti-reflective layers, making them a lot cheaper, might finally make solar energy a force to be reckoned with.

Silicon nanostructures were formed using metal-assisted etching. a, Cross-sectional SEM images of an unmodified silicon nanostructure solar cell. b, Cross-sectional SEM image of modified nanostructured silicon solar cells.

Silicon nanostructures were formed using metal-assisted etching. a, Cross-sectional SEM images of an unmodified silicon nanostructure solar cell. b, Cross-sectional SEM image of modified nanostructured silicon solar cells. (c) NREL

The NREL researchers made a nano-structure surface for their light collecting solar cell, without loosing efficiency. To achieve this, they created nano-islands of silver on a silicon wafer, which was then immersed briefly in liquids to make billions of nano-sized holes in each square-inch of the silicon wafer surface. Since the holes and silicon walls are smaller than the light wavelengths hitting them, the light doesn’t bounce back into the atmosphere as it doesn’t recognize any change in density at the solar cell’s surface – this translates into a significant energy saving.

Typical solar cells currently commercially available employ multiple layers of anti-reflecting materials to achieve the same effect, at a very high financial cost, however. Howard Branz, principal investigator of the research said:

“This work can have a big impact on both conventional and emerging solar cell based on nanowires and nanospheres. For the first time it shows that really great solar cells can be made from nanostructured semiconductors.”

Branz added, “The next challenges are to translate these results to common industrial practice and then get the efficiency over 20%. After that, I hope to see these kinds of nanostructuring techniques used on far thinner cells to use less semiconductor material.”

“Now we have a clear study that shows how optimizing the surface area and the doping together can give better efficiency,” Yuan said. “The surface area and the doping concentration near the surface affect nano-structured solar-cell performance.”

The findings were reported in the journal Nature Nanotechnology.

share Share

If you use ChatGPT a lot, this study has some concerning findings for you

So, umm, AI is not your friend — literally.

Miyazaki Hates Your Ghibli-fied Photos and They're Probably a Copyright Breach Too

“I strongly feel that this is an insult to life itself,” he said.

Bad microphone? The people on your call probably think less of you

As it turns out, a bad microphone may be standing between you and your next job.

This AI Tool Can Scan Your Food and Tell You Exactly How Many Calories and Other Nutrients It Has

Knowing what's inside your food has never been so easy.

Astronauts Can Now Print Metal in Space and It’s a Game Changer for Future Missions

ESA’s metal 3D printer aboard the ISS could revolutionize space exploration by enabling self-sufficient missions.

This Tiny Robot Swims Like a Worm — and Could Explore Alien Oceans

Marine flatworms have perfected smooth, undulating motion over millions of years of evolution. Now, scientists have taken inspiration to create a highly agile robot.

Sam Altman said it was "hopeless" for smaller AIs to compete with OpenAI. DeepSeek proved him wrong

It’s hard to overstate just how impactful DeepSeek has been. In a couple of days, it rattled the entire AI industry, shattering the aura of invincibility that OpenAI (and American tech companies in general) had built around themselves. DeepSeek’s new AI is the number one most downloaded free app on the Apple Store, and it’s […]

A paralyzed man just piloted a virtual drone using his brain

This new brain-computer interface offers a glimpse into the future for millions with motor impairments.

Single-Crystal Batteries Could Power EVs for Millions of Miles

A battery with this technology has been constantly charging and discharging for 6 years and it's at 80% of capacity.

Godfather of AI says there's a 10-20% chance AI wipes out humanity in 30 years

AI could bring an industrial revolution-level change, but at what cost?