homehome Home chatchat Notifications


Soft robot hand can sweat to keep itself cool

Inspired by human's unique ability to keep cool, researchers have designed a soft robot that sweats.

Tibi Puiu
January 30, 2020 @ 4:05 pm

share Share

Credit: Mishra et al, Science Robotics.

An experimental soft-bodied robotic hand maintains a stable temperature by releasing water through its tiny pores.

Although still a proof of concept, this bio-inspired approach could lead to a new class of robots that can operate for prolonged periods of time without overheating.

Sweaty robot palms

Robots and mechanical machines, in general, face important thermoregulation challenges, either because their components overheat or due to operating in hot environments like an assembly line or out in the field on a summer day. Cooling consumes a lot of energy, raising costs, while poor heat management can significantly impact the durability and performance of the machines.

Researchers at the Cornell University, Facebook Reality Labs, and the Center for Micro-BioRobotics in Pisa, addressed this challenge by looking at nature for a solution — the cooling power of perspiration naturally stood out.

“We believe [this] is a basic building block of a general purpose, adaptive, and enduring robot,” said Robert Shepherd, associate professor of Cornell’s Sibley School of Mechanical and Aerospace Engineering and co-author of the research,

When our bodies heat up, our millions of glands across our skin produce sweat — mostly water with a little bit of potassium, salt, and a few other minerals. Humans have the most efficient sweating system that we know of — we’re more of an exception in that we rely on secreting water on our skin to stay cool. Most furry mammals regulate their body temperature through panting while other animals like ectotherms — lizards, amphibians, and insects — have evolved other behaviors that help keep them cool.

Sweating enabled humans to march all day, even on hot summer days when most predators are out in the shade cooling off. So, in many ways, sweating has been a secret weapon that helped us survive and thrive across the world, in many different climates.

It makes sense to model some of our machines after this biological mechanism.

“It turns out that the ability to perspire is one of the most remarkable features of humans,” said Thomas Wallin, an engineer at Facebook Reality Labs and co-author of the new study. “We’re not the fastest animals, but early humans found success as persistent hunters. The combination of sweating, relative hairlessness, and an upright bipedal gait enabled us to physically exhaust our prey over prolonged chases.”

Credit: Science Robotics.

Wallin and colleagues designed a balloon-like robot fitted with pores that allow water to slowly ooze out — but only once the “body” temperature reaches a certain threshold. In order to make the hand-shaped robot respond to temperature, the researchers employed a hydrogel material called poly-N-isopropylacrylamide (PNIPAm). This material reacts to temperature passively, without the need for sensors or additional electronic components.

At 30 degrees Celsius (86 degrees Fahrenheit), the micropores in the soft robot’s top layer stay closed. Beyond this temperature, the pores expand, allowing pressurized fluid to leak — the robot sweats.

Experiments during which the robot was exposed to wind from a fan showed that the cooling rate was six times better than non-sweating machines. In fact, the thermoregulatory performance was even better than humans and horses (the other animal that sweats, although quite differently than humans do; horses still mainly rely on panting to cool off).

Such soft robots, however, aren’t well suited for all types of applications. The dripping solution makes the soft actuators slippery, making grasping challenging. The robot also runs out of water eventually and a refillable water tank isn’t always an option.

It’s still a very interesting proof of concept that shows you don’t need huge heat sinks and cooling fans to keep a robot’s temperature at optimal levels.

The findings appeared in the journal Science Robotics.

share Share

Future Windows Could Be Made of Wood, Rice, and Egg Whites

Simple materials could turn wood into a greener glass alternative.

Researchers Turn 'Moon Dust' Into Solar Panels That Could Power Future Space Cities

"Moonglass" could one day keep the lights on.

Ford Pinto used to be the classic example of a dangerous car. The Cybertruck is worse

Is the Cybertruck bound to be worse than the infamous Pinto?

Archaeologists Find Neanderthal Stone Tool Technology in China

A surprising cache of stone tools unearthed in China closely resembles Neanderthal tech from Ice Age Europe.

A Software Engineer Created a PDF Bigger Than the Universe and Yes It's Real

Forget country-sized PDFs — someone just made one bigger than the universe.

The World's Tiniest Pacemaker is Smaller Than a Grain of Rice. It's Injected with a Syringe and Works using Light

This new pacemaker is so small doctors could inject it directly into your heart.

Scientists Just Made Cement 17x Tougher — By Looking at Seashells

Cement is a carbon monster — but scientists are taking a cue from seashells to make it tougher, safer, and greener.

Three Secret Russian Satellites Moved Strangely in Orbit and Then Dropped an Unidentified Object

We may be witnessing a glimpse into space warfare.

Researchers Say They’ve Solved One of the Most Annoying Flaws in AI Art

A new method that could finally fix the bizarre distortions in AI-generated images when they're anything but square.

The small town in Germany where both the car and the bicycle were invented

In the quiet German town of Mannheim, two radical inventions—the bicycle and the automobile—took their first wobbly rides and forever changed how the world moves.