homehome Home chatchat Notifications


Pushing Moore's law to its absolute limit: Researchers build graphene transistor the size of an atom

We're reaching the limit of what should be possible in transistor miniaturization.

Mihai Andrei
April 8, 2022 @ 7:21 pm

share Share

It’s stunning to think how much computer chip miniaturization has progressed in a few decades. Take the best, most advanced computers from thirty years ago and they look nothing like the device you’re likely reading this on. This progress has been summed by Moore’s Law, which states that the number of transistors in a dense integrated circuit (IC) doubles about every two years.

Of course, Moore’s law isn’t really a law, it’s an estimate — although a remarkably accurate estimate. But the estimate only stands until you get to really, really small sizes. When your transistors become very small and you enter the quantum world, the “normal” laws of physics don’t apply anymore. We’re reaching that stage.

In a study published in Nature, researchers detail the construction of a transistor gate that’s 0.34 nanometers (nm) long — about 4 times the length of a carbon atom.

Nanometer-sized nanotubes (depicted here) had already been used for transistors. But with graphene, scientists went even further. Image credits: Aidar Kemelbay.

A transistor is essentially a device that amplifies or switches electrical signals and power. The gate is the component that switches the transistor on and off; think of it as the “yes” or “no” controller of the transistor. Previously, researchers managed to get transistor gates to lengths of 1 nanometer and even below, but this is pretty much as low as it gets.

“In the future, it will be almost impossible for people to make a gate length smaller than 0.34 nm,” the paper’s senior author Tian-Ling Ren told IEEE Spectrum. “This could be the last node for Moore’s Law.”

While previous ultra-small transistors used carbon nanotubes for the gate, Ren and colleagues decided to opt for graphene, which is essentially a sheet of carbon so thin that it behaves like a 2D material. They started out with a layer of silicone dioxide as the base structure, and then used vapors to deposit graphene on top of the silicon dioxide. They then sandwiched the graphene with aluminum oxide, essentially cutting off its electrical properties from the rest of the transistor. Then, they etched a step in the sandwiched materials, exposing the edge of the graphene sheet to the vertical wall of the step, essentially creating an atomically thin transistor gate.

Image credits: Wu et al (2022) / Nature.

Of course, this is a proof of concept. There’s still a long way to go before we incorporate this type of technology into working microchips, but the fact that scientists have gone to the absolute smallest sizes possible is remarkable. But it also speaks to the physical limitations future microchips will face. What will you do if you can’t fit more transistors onto a board?

Before you freak out, Moore’s law isn’t driven only by transistors, improvements in architecture and software can also drive progress. But researchers looking to make more powerful computers have their work cut out for them.

The study has been published in Nature.

share Share

If you use ChatGPT a lot, this study has some concerning findings for you

So, umm, AI is not your friend — literally.

Miyazaki Hates Your Ghibli-fied Photos and They're Probably a Copyright Breach Too

“I strongly feel that this is an insult to life itself,” he said.

Bad microphone? The people on your call probably think less of you

As it turns out, a bad microphone may be standing between you and your next job.

Earth’s Longest Volcanic Ridge May Be an Underwater Moving Hotspot

Scientists uncover surprising evidence that the Kerguelen hotspot, responsible for the 5,000-kilometer-long Ninetyeast Ridge, exhibited significant motion.

New NASA satellite mapped the oceans like never before

We know more about our Moon and Mars than the bottom of our oceans.

This AI Tool Can Scan Your Food and Tell You Exactly How Many Calories and Other Nutrients It Has

Knowing what's inside your food has never been so easy.

Cats Actually Have Hundreds of Facial Expressions and They Mirror Each Other to Form an Emotional Bond

Want to befriend a cat? Don't forget to blink or squint back if a cat does the same at you.

Astronauts Can Now Print Metal in Space and It’s a Game Changer for Future Missions

ESA’s metal 3D printer aboard the ISS could revolutionize space exploration by enabling self-sufficient missions.

This Tiny Robot Swims Like a Worm — and Could Explore Alien Oceans

Marine flatworms have perfected smooth, undulating motion over millions of years of evolution. Now, scientists have taken inspiration to create a highly agile robot.

Sam Altman said it was "hopeless" for smaller AIs to compete with OpenAI. DeepSeek proved him wrong

It’s hard to overstate just how impactful DeepSeek has been. In a couple of days, it rattled the entire AI industry, shattering the aura of invincibility that OpenAI (and American tech companies in general) had built around themselves. DeepSeek’s new AI is the number one most downloaded free app on the Apple Store, and it’s […]